Agent_A
  • Agent_A
Lagrange Multipliers Question (See photo) Need to see a complete solution. I want to check it against mine. Thanks!
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Agent_A
  • Agent_A
1 Attachment
anonymous
  • anonymous
So you're optimizing \(2x^3+y^4\) subject to \(x^2+y^2<=1\). The first step would be to find the critical points of the target function: \[\frac{\partial}{\partial x}\left[2x^3+y^4\right]=6x^2\quad\quad\quad\frac{\partial}{\partial y}\left[2x^3+y^4\right]=4y^3\] Setting the partial derivatives equal to \(0\) indicates that the only critical point occurs at \((0,0)\).
anonymous
  • anonymous
Next you want to find any other extreme values by setting \(\nabla f(x,y)=\lambda \nabla g(x,y)\), where \(f(x,y)\) is the function you're optimizing here and \(g(x,y)\) is the constraint function. \[\nabla f(x,y)=\nabla(2x^3+y^4)=\left\langle6x^2,4y^3\right\rangle\\ \lambda\nabla g(x,y)=\lambda\nabla(x^2+y^2)=\lambda\left\langle2x,2y\right\rangle\] Matching up the corresponding components, you have \[\begin{cases}6x^2=2\lambda x\\ 4y^3=2\lambda y\end{cases}~~\implies~~\begin{cases}x(3x-\lambda)=0 \\ y(2y^2-\lambda)=0 \end{cases}\] We have several solutions here: \(x=0\), \(y=0\), \(x=\dfrac{\lambda}{3}\), \(y=\sqrt{\dfrac{\lambda}{2}}\), and \(y=-\sqrt{\dfrac{\lambda}{2}}\). The point \((0,0)\) corresponds to the critical point we already found, so we'll omit that one. Besides, if \(x,y=0\) then we immediately have \(\lambda=0\), which doesn't get us anywhere.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
If \(x=0\), the constraint tells us that \(y^2=1\), or \(y=\pm1\). If \(x=\dfrac{\lambda}{3}\), then \(\dfrac{\lambda^2}{9}+y^2=1\) gives \(y=\pm\sqrt{1-\dfrac{\lambda^2}{9}}\). If \(y=0\), we get \(x=\pm1\). If \(y=\pm\sqrt{\dfrac{\lambda}{2}}\), then \(x^2+\dfrac{\lambda}{2}=1\) gives \(x=\pm\sqrt{1-\dfrac{\lambda}{2}}\). Plug in the solutions in terms of \(\lambda\) into the constraint equation. Completing the square and solving gives you two possible values for \(\lambda\): \[\left(\pm\sqrt{1-\dfrac{\lambda}{2}}\right)^2+\left(\pm\sqrt{1-\dfrac{\lambda^2}{9}}\right)^2=1~~\implies~~ \frac{1}{9}\left(\lambda+\frac{9}{4}\right)^2-\frac{25}{16}=0\] which has two roots, \(\lambda=-6\) and \(\lambda=\dfrac{3}{2}\). If \(\lambda=-6\), then \(x=-2\) and \(y\) is complex, so we can omit this case. If \(\lambda=\dfrac{3}{2}\), then \(x=\dfrac{1}{2}\) and \(y=\pm\sqrt{\dfrac{3}{4}}\). All this to say we have two points to check: \(\left(\dfrac{1}{2},-\sqrt{\dfrac{3}{4}}\right)\) and \(\left(\dfrac{1}{2},\sqrt{\dfrac{3}{4}}\right)\)
anonymous
  • anonymous
Actually, not just those two, we have other cases to consider as well: \[\begin{matrix} (0,-1)&&(0,1)&&(1,0)&&(-1,0) \end{matrix}\] So plug all these points into \(f(x,y)=2x^3+y^4\). Which point gives the highest value? lowest?
Agent_A
  • Agent_A
Thank You, @SithsAndGiggles!

Looking for something else?

Not the answer you are looking for? Search for more explanations.