anonymous
  • anonymous
how do you simplify....
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[(^{4}\sqrt{7^{9})}\]
anonymous
  • anonymous
\[(^{5\sqrt{7^{3 )}}}\]
UsukiDoll
  • UsukiDoll
any attempts?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
into exponents?
UsukiDoll
  • UsukiDoll
let's start on the first problem.. that the fourth root of 7^9 right?
UsukiDoll
  • UsukiDoll
\[(^{4}\sqrt{7^{9})} \]
anonymous
  • anonymous
yes s
UsukiDoll
  • UsukiDoll
umm let's see we need to simplify...
UsukiDoll
  • UsukiDoll
I'm wondering if the exponent rule can work \[x^{a}x^{b} \rightarrow x^{a+b}\]
UsukiDoll
  • UsukiDoll
only for that 7 though.
UsukiDoll
  • UsukiDoll
and we need the fourth root.. we have 7^9, but we need a fourth root... we can split this up if the 4th root is required .. We need anything to the fourth power.. so I let x = 7 and a =4. If the total exponent is 9 who is going to be my b? it's like solving a +b = 9 (for the exponent portion) 4+b=9
UsukiDoll
  • UsukiDoll
\[\Large 7^{4}7^{b} \rightarrow 7^{4+b}\]
UsukiDoll
  • UsukiDoll
wait.. it turns out that there is more than 1 7^4 I'm going to use the exponent rule again \[\large 7^{8+1} \rightarrow 7^{8}7^1\]
UsukiDoll
  • UsukiDoll
\[\large (^{4}\sqrt{7^{8}7^{1})}\]
UsukiDoll
  • UsukiDoll
so rewriting this briefly in exponential form \[\LARGE 7^{\frac{8}{4}}7^{\frac{1}{4}}\]
UsukiDoll
  • UsukiDoll
@leejee what is 8/4 ?

Looking for something else?

Not the answer you are looking for? Search for more explanations.