anonymous
  • anonymous
Select the inequality that models the problem. The length of a rectangle is twice its width. If the perimeter of the rectangle is less than 50 meters, what is the greatest width of the rectangle?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
2 • 2w + 2w < 50 2 + 2w < 50 2w • w < 50 2w < 50
anonymous
  • anonymous
option a
anonymous
  • anonymous
the reason being that...if w is the width of the rectangle, then 2w will be the length of the rectangle....... perimeter is = 2(l+b) =2(2w+w)=2.2w+2w....got it?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
this 2.2w+2w has to be less that 50
TrojanPoem
  • TrojanPoem
L = 2 W 2L + 2W < 50 4W + 2W < 50 6W < 50 W < 25/3

Looking for something else?

Not the answer you are looking for? Search for more explanations.