Create a quadratic polynomial function f(x) and a linear binomial in the form (x − a). Part 1. Show all work using long division to divide your polynomial by the binomial. Part 2. Show all work to evaluate f(a) using the function you created. Part 3. Use complete sentences to explain how the remainder theorem is used to determine whether your linear binomial is a factor of your polynomial function

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Create a quadratic polynomial function f(x) and a linear binomial in the form (x − a). Part 1. Show all work using long division to divide your polynomial by the binomial. Part 2. Show all work to evaluate f(a) using the function you created. Part 3. Use complete sentences to explain how the remainder theorem is used to determine whether your linear binomial is a factor of your polynomial function

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

f(x) = x^3 - 3x^2 - x + 3., and a linear function g(x) = (x - 1). Part 1. Divide f(x) by g(x). You must do it yourself using the long division you have learned f(x)/g(x) = (x^3 - 3x^2 + x + 3)/(x - 1) = x^2 - 2x + 3 (no remainder) Part 2: a = 1 -> f(a) = f(1) = 0

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

The remainder theorem is based on synthetic division, which is the process of dividing a polynomial f(x) by a polynomial D(x) and finding the remainder. This is written as , where f(x) is the dividend, Q(x) is the quotient, D(x) is the divisor, and R(x) is the remainder.
^^ ahh @misssunshinexxoxo caught it b4 me lol
@Mathania if you got questions please let me know

Not the answer you are looking for?

Search for more explanations.

Ask your own question