functions.

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\(\large \color{black}{\begin{align} &\normalsize \text{which of the following two functions are identical ?}\hspace{.33em}\\~\\ &a.)\ f(x)=\dfrac{x^2}{x} \ \hspace{.33em}\\~\\ &b.)\ g(x)=(\sqrt{x})^2 \hspace{.33em}\\~\\ &c.)\ h(x)=x \hspace{.33em}\\~\\~\\~\\ &i.) \ \normalsize a.) \ \text{and }\ b.)\hspace{.33em}\\~\\ &ii.) \ \normalsize b.) \ \text{and }\ c.)\hspace{.33em}\\~\\ &iii.) \ \normalsize a.) \ \text{and }\ c.)\hspace{.33em}\\~\\ &iv.) \ \normalsize a.),\ b.) \ \text{and }\ c.)\hspace{.33em}\\~\\ &v.) \ \normalsize \text{none of these } \hspace{.33em}\\~\\ \end{align}}\)
g is a line y=x for all x\(\ge\)0 f is a line y=x for all x, besides x=0 h is just a line y=x
I got ii b) and c)

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

none of them are absolutely the same thing, but the closest ones I would say are f and h
@Vocaloid for the first one, I think zero is not allowed the domain.
^right, I didn't see that before, thank you
so I would say that none of them are the same
you have almost got the absolute value in g, Absolute value definition: |D| = sqrt (D^2)
None of them have the same domains!
but switching the order of ^2 and square root eliminates the left side of the absolute value function, making it y=x for all x>=0. (as I said before)
yes, none of them have the same exact domains
I thought all the same but wanted 2
the last option specifies "none of the above"
is the answer "none of these" as all are saying domain is not same.
Yeah.
|dw:1434999703267:dw|
basically
|dw:1434999855949:dw|
@SolomonZelman are u saying that f(x)=g(x) and option i) is correct ?
i mean * are u saying that f(x)=h(x) and option i) is correct ?
oh it shifted something
i mean option iii.) lol
|dw:1435000227558:dw|
is that better ?
ok option none of these thnks all
yup
\(\rm \color{green}{mathmath333=\left(math\right)^23^3=27\left(math\right)^2}\)
jk
hahaaaha

Not the answer you are looking for?

Search for more explanations.

Ask your own question