anonymous
  • anonymous
Solve x2 − 8x + 5 = 0 using the completing-the-square method. x = negative four plus or minus the square root of eleven x = four plus or minus the square root of eleven x = negative four plus or minus the square root of five x = four plus or minus the square root of five
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
The Answer is b right?
anonymous
  • anonymous
dd
1 Attachment
misssunshinexxoxo
  • misssunshinexxoxo
Correct! :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
can you help me with one more?
anonymous
  • anonymous
@misssunshinexxoxo
misssunshinexxoxo
  • misssunshinexxoxo
x = -b + - square root b^2 - 4ac/ 2a x = -8 + - square root 8^2 - 4 (1) (-5) / 2 (1) x = -8 + - square root 64 + 20/ 2 x = -8 + - square root 84/ 2 = -8 + - square root 4 * 21/ 2 = -8 + - 2 * square root 21 / 2 x = 2 ( -4 + - square root 21 ) / 2 x = -4 + - square root 21
anonymous
  • anonymous
Using the completing-the-square method, find the vertex of the function f(x) = 5x2 + 10x + 8 and indicate whether it is a minimum or a maximum and at what point. Maximum at (1, 8) Minimum at (1, 8) Maximum at (–1, 3) Minimum at (–1, 3)
anonymous
  • anonymous
I place D
misssunshinexxoxo
  • misssunshinexxoxo
Yes correct again! :) I'm taking algebra 2 FLVS also
anonymous
  • anonymous
haha what module
misssunshinexxoxo
  • misssunshinexxoxo
In module 8 right now did it under 16 weeks
anonymous
  • anonymous
when did you start? I started 2 weeks ago haha and I am on Module 3
anonymous
  • anonymous
@misssunshinexxoxo
misssunshinexxoxo
  • misssunshinexxoxo
Started last month feel free to message me
anonymous
  • anonymous
Well I plan on finishing it during the summer What is the hardest module in your perspective?
anonymous
  • anonymous
@misssunshinexxoxo

Looking for something else?

Not the answer you are looking for? Search for more explanations.