unicwaan
  • unicwaan
Can someone help me verify the identity? sine of x divided by one minus cosine of x + sine of x divided by one minus cosine of x = 2 csc x
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
BTaylor
  • BTaylor
so, this? \[\frac{\sin x}{1-\cos{x}} + \frac{\sin x}{1-\cos{x}} = 2\csc x\]
unicwaan
  • unicwaan
yes except the it's 1- cos and 1 + cos sorry
welshfella
  • welshfella
first convert the 2 fractions on left side to one fraction

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

BTaylor
  • BTaylor
You want to use the identity \(1-\cos^2 x = \sin^2 x\). Multiply the 1 - cos x by (1 + cos x) on top and bottom, and you will have sin^2 x on the bottom.
unicwaan
  • unicwaan
Okay I understand that step BTaylpr but I don't know how the make the other fraction the same like what welshfella wants me to do
misty1212
  • misty1212
HI!!
BTaylor
  • BTaylor
\[\frac{\sin x}{1-\cos{x}} \cdot \frac{1+\cos x}{1+\cos x} + \frac{\sin x}{1+\cos{x}} \cdot \frac{1-\cos x}{1-\cos x} = 2\csc x\]
misty1212
  • misty1212
you can also just add, you will get it that way too
unicwaan
  • unicwaan
Oh the conjugate! I forgot about that!
misty1212
  • misty1212
\[\frac{b}{1+a}+\frac{b}{1-a}=\frac{b(1-a)+b(1+a)}{(1-a)(1+a)}\]
misty1212
  • misty1212
you get \[\frac{2b}{1-a^2}\]
unicwaan
  • unicwaan
Thank you I justed needed that step to get me started, I can figure the rest out :)
unicwaan
  • unicwaan
just*
BTaylor
  • BTaylor
no problem

Looking for something else?

Not the answer you are looking for? Search for more explanations.