SolomonZelman
  • SolomonZelman
just made it up....
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
SolomonZelman
  • SolomonZelman
List of weirdest questions that have seen....i am all making it up \(\Large\color{black}{ \displaystyle \sum_{ n=1 }^{ \infty } \rm \frac{(n!)^n}{n^{(n!)}}}\) \(\Large\color{black}{ \displaystyle \sum_{ n=1 }^{ \infty } \rm \frac{(n^2+1)!}{n^n}}\)
xapproachesinfinity
  • xapproachesinfinity
eh lolz the first converge
SolomonZelman
  • SolomonZelman
should...

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

mathmath333
  • mathmath333
i find it normal though i dont undestand it completly.
xapproachesinfinity
  • xapproachesinfinity
eh you made up those series haha let see how the first can converge
xapproachesinfinity
  • xapproachesinfinity
let me first cheat with wolf
mathmath333
  • mathmath333
lol
SolomonZelman
  • SolomonZelman
\(\Large\color{black}{ \displaystyle \lim_{ n\rightarrow \infty }\left|\frac{(n+1)!~^{n+1}}{(n+1)^{(n+1)!}}\times \frac{n^{(n!)}}{(n!)^n}\right|}\)
SolomonZelman
  • SolomonZelman
it is a very good latex practice too
SolomonZelman
  • SolomonZelman
+ i haven't done them in a while... good start to refresh them
xapproachesinfinity
  • xapproachesinfinity
no i can't bear writing all that! too lazy
SolomonZelman
  • SolomonZelman
\(\Large\color{black}{ \displaystyle \lim_{ n\rightarrow \infty }\left|\frac{(n+1)!~^{n+1}}{(n+1)^{(n+1)!}}\times \frac{n^{(n!)}}{(n!)^n}\right|}\) \(\Large\color{black}{ \displaystyle \lim_{ n\rightarrow \infty }\frac{(n+1)!~^{n+1}n^{(n!)}}{(n+1)^{(n+1)!}(n!)^n}}\) btw dit is ratio test
xapproachesinfinity
  • xapproachesinfinity
looks doable to me! wolf kicked me out lol didn't give me an answer
SolomonZelman
  • SolomonZelman
I am doing a suicide mission
xapproachesinfinity
  • xapproachesinfinity
2nd diverge actually! just limit
SolomonZelman
  • SolomonZelman
i am getting stuck on the first one
SolomonZelman
  • SolomonZelman
\(\Large\color{black}{ \displaystyle \lim_{ n\rightarrow \infty }\frac{(n+1)!~^{n+1}n^{(n!)}}{(n+1)^{(n+1)!}(n!)^n}}\) this is the first outcome of the ratio test a(n+1)/a(n)
xapproachesinfinity
  • xapproachesinfinity
you can kill (n!)^n leaving (n+1)^(n+1)
SolomonZelman
  • SolomonZelman
oh...
SolomonZelman
  • SolomonZelman
indeed... i didn't notice that... to complicated it got
xapproachesinfinity
  • xapproachesinfinity
(n+1)^(n+1)!=((n+1)^(n+1))^n!
SolomonZelman
  • SolomonZelman
wow.... \(\bf\color{red}{\href{http:///www.wolframalpha.com/input/?i=limit+n%E2%86%92%E2%88%9E+%28%28%28n%2B1%29%21%29%5E%28n%2B1%29n%5E%28n%21%29%29%2F%28%28n%2B1%29%5E%28%28n%2B1%29%21%29%28n%21%29%5En%29}{RESULT ~is~0}}\)
xapproachesinfinity
  • xapproachesinfinity
eh really?
SolomonZelman
  • SolomonZelman
yes converges....
SolomonZelman
  • SolomonZelman
i entered the limit, r=0
SolomonZelman
  • SolomonZelman
as n-> inf
xapproachesinfinity
  • xapproachesinfinity
in computer program? or you did the limit
SolomonZelman
  • SolomonZelman
i entered in wolfram and did a hiperlink, because the link is kinda too long
SolomonZelman
  • SolomonZelman
http://www.wolframalpha.com/input/?i=limit+n%E2%86%92%E2%88%9E+%28%28%28n%2B1%29%21%29%5E%28n%2B1%29n%5E%28n%21%29%29%2F%28%28n%2B1%29%5E%28%28n%2B1%29%21%29%28n%21%29%5En%29
xapproachesinfinity
  • xapproachesinfinity
oh! i think we can do it by hand lolz needs some good cleaning
anonymous
  • anonymous
hello solomon you have the coolest profile pic
anonymous
  • anonymous
can i use it please?
SolomonZelman
  • SolomonZelman
plagiarism.... i would mind that someone looks same as me. do some basic effects to it and change it so that it differs
SolomonZelman
  • SolomonZelman
anyway....
xapproachesinfinity
  • xapproachesinfinity
this limit is 0 http://www.wolframalpha.com/input/?i=limit+n%E2%86%92%E2%88%9E+%28n%2F%28n%2B1%29%5E%28n%2B1%29%29%5E%28n%21%29
xapproachesinfinity
  • xapproachesinfinity
we can use some taylor to find out but that's too long of work the limit (n+1)^n+1=1
SolomonZelman
  • SolomonZelman
i got disconnected.
SolomonZelman
  • SolomonZelman
yes, that is not something i would right now, i am a bit tired after finals
SolomonZelman
  • SolomonZelman
I will do some more very simple ones I guess. tnx:)
SolomonZelman
  • SolomonZelman
\(\large\color{black}{ \displaystyle \sum_{ n=3 }^{ \infty } \frac{e}{n!}}\)
SolomonZelman
  • SolomonZelman
\(\large\color{black}{ \displaystyle e^x=\sum_{ n=1 }^{ \infty } \frac{x^n}{n!}}\) \(\large\color{black}{ \displaystyle ee^x=e\sum_{ n=1 }^{ \infty } \frac{x^n}{n!}}\) \(\large\color{black}{ \displaystyle ee^1=e\sum_{ n=1 }^{ \infty } \frac{1^n}{n!}}\) \(\large\color{black}{ \displaystyle e^2=\sum_{ n=1 }^{ \infty } \frac{e}{n!}}\)
SolomonZelman
  • SolomonZelman
i have an error
SolomonZelman
  • SolomonZelman
this x^n/n! starts from 0
xapproachesinfinity
  • xapproachesinfinity
that's pretty good trick :) you can make that start at 1 instead 3
SolomonZelman
  • SolomonZelman
and then \(\large\color{black}{ \displaystyle \sum_{ n=3 }^{ \infty } \frac{e}{n!}=e^2-\frac{e}{0!}-\frac{e}{1!}-\frac{e}{2!} }\) \(\large\color{black}{ \displaystyle \sum_{ n=3 }^{ \infty } \frac{e}{n!}=e^2-2.5e }\)
SolomonZelman
  • SolomonZelman
yes, as long as I change my both sides the same way it can all work out...
SolomonZelman
  • SolomonZelman
\(\large\color{black}{ \displaystyle \sum_{ n=1 }^{ \infty } \frac{n}{n!} }\) for convr/diver
SolomonZelman
  • SolomonZelman
i mean that is obviously convergent
SolomonZelman
  • SolomonZelman
\(\large\color{black}{ \displaystyle (n+1)/(n+1)!~~\times ~~~n!/n}\) \(\large\color{black}{ \displaystyle1/n=0}\)
SolomonZelman
  • SolomonZelman
:)
SolomonZelman
  • SolomonZelman
\(\large\color{black}{ \displaystyle \sum_{ n=k }^{ \infty } \frac{n!}{n^n}}\)
xapproachesinfinity
  • xapproachesinfinity
i have seen that one before i guess
SolomonZelman
  • SolomonZelman
\(\large\color{black}{ \displaystyle n!=1\times 2\times 3 \times ... \times n}\) \(\large\color{black}{ \displaystyle n^n=n\times n\times n \times ... \times n}\)
SolomonZelman
  • SolomonZelman
oh,comp test to 2/n^2
xapproachesinfinity
  • xapproachesinfinity
ratio works good with that too
SolomonZelman
  • SolomonZelman
\(\large\color{black}{ \displaystyle \frac{n!}{n^n}=\frac{1}{n}\times \frac{2}{n} \times \frac{3}{n} \times \frac{4}{n} \times ~~...~~\times \frac{n}{n}}\) (n times) each of these terms fraction on the right is smaller than 1 besides from 1/n so n!/n^n is in fact smaller than the product of 1st 2 terms
SolomonZelman
  • SolomonZelman
\(\large\color{black}{ \displaystyle \sum_{n=k}^{\infty}\frac{n!}{n^n}=\sum_{n=k}^{\infty}\frac{2}{n^2}}\)
SolomonZelman
  • SolomonZelman
by the way what is the p series 1/n^2 ? 6/pi^2 ?
xapproachesinfinity
  • xapproachesinfinity
1/n^p
xapproachesinfinity
  • xapproachesinfinity
constant on top doesnot really matter
xapproachesinfinity
  • xapproachesinfinity
oh what is it yes pi^2/6
SolomonZelman
  • SolomonZelman
\(\large\color{black}{ \displaystyle \sum_{n=1}^{\infty}\frac{1}{n^2}=\pi^2/6}\)
SolomonZelman
  • SolomonZelman
and with p=4, pi^4/90
SolomonZelman
  • SolomonZelman
starting from n=1, and w/o coefficients in front
SolomonZelman
  • SolomonZelman
k, lets see what math math got there:)
xapproachesinfinity
  • xapproachesinfinity
well you are just comparing there are not equal
xapproachesinfinity
  • xapproachesinfinity
you want to find the limit?
SolomonZelman
  • SolomonZelman
they are not equal, but 2/n^2 is larger than n!/n^n
SolomonZelman
  • SolomonZelman
|dw:1435010612413:dw|
SolomonZelman
  • SolomonZelman
|dw:1435010912898:dw|
SolomonZelman
  • SolomonZelman
when you multiply something by a number smaller than 1 you make it smaller
SolomonZelman
  • SolomonZelman
this is why 2/n^2 is greater than n!/n^n
SolomonZelman
  • SolomonZelman
so call n!/n^n A(n) and 2/n^2 B(n)
SolomonZelman
  • SolomonZelman
by definition of comparison test, if B(n) is larger and converges, then A(n) will also converges

Looking for something else?

Not the answer you are looking for? Search for more explanations.