iamMJae
  • iamMJae
"From the formula for sin (2t + t) find sin 3t in terms of sin t." How do I start with this problem and what should I find at the end? Should I be looking at Ptolemy's identities? (Sum and difference formulas?)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
kropot72
  • kropot72
You will find the necessary theory here http://mathworld.wolfram.com/Multiple-AngleFormulas.html to get the result \[\large \sin (2t+t)=\sin 3t=3\sin t-4\sin^{3}t\]
kropot72
  • kropot72
There is a simple derivation of the triple angle formula for sine here: http://www.sciencehq.com/mathematics/trigonometric-multiple-and-sub-multiple-angle-formulas.html
zepdrix
  • zepdrix
I have another fun approach :) You can look at the sine as the imaginary part of the complex form cos(x)+i sin(x), \[\Large\rm \sin(3t)=\text{Im}\left[\cos(3t)+i \sin(3t)\right]\]And then apply De'moivre's Theorem in reverse,\[\Large\rm \text{Im}\left[\cos(3t)+i \sin(3t)\right]=\text{Im}\left[\cos(t)+i \sin(t)\right]^3\]Expand out the stuff (Imma be lazy and call the cosines c, and sines s),\[\Large\rm \text{Im}\left[c^3+3c^2(is)+3c(is)^2+(is)^3\right]\]Simplify:\[\Large\rm \text{Im}\left[c^3+3ic^2s-3cs^2-is^3\right]\]And then simply pick out the imaginary pieces to get your answer!\[\Large\rm 3c^2s-s^3=3\sin(t)\cos^2(t)-\sin^3(t)\]And then I guess we would have to convert the squared cosine to sines :P This might seem super long and tedious, but it's actually really helpful when dealing with larger coefficients on your angle, like 11t or 25t Not so great with 3t though hehe just a fun approach to think about c:

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

iamMJae
  • iamMJae
Thanks a lot for your help!
kropot72
  • kropot72
You're welcome :)
anonymous
  • anonymous
I have another one but this one's pretty straight forward. All you need to know is sin(a+b)=sina*cosb+sin(b)*cos(a), cos(a+b)=cos(a)*cos(b)-sin(a)*sin(b) and sin(a)^2+sin(b)^2=1. First express sin(2t)=2*sin(t)*cos(t) Then express sin(2t+t)=sin(2t)*cos(t) +sin(t) *cos(2t) Replace sin(2t)=2*sin(t)*cos(t) in sin(2t)*cos(t) +sin(t) *cos(2t) and you have sin(2t+t)=2*sin(t)*cos(t)^2 +sin(t) *cos(2t) Express cos(t)^2=1-sin(t)^2 (funamental theorem) thus sin(2t+t)=2*sin(t)*(1-sin(t)^2) +sin(t) *cos(2t) Express cos(2t)=cos(t)^2-sin(t)^2=1-sin(t)^2 (fundamental theorem) and you have sin(2t+t)=2*sin(t)*(1-sin(t)^2) +sin(t) *(1-sin(t)^2)

Looking for something else?

Not the answer you are looking for? Search for more explanations.