anonymous
  • anonymous
can anyone help me understand the angular momentum questions
Physics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
rvc
  • rvc
The formula for angular momentum (L) is \(\Large\rm \color{red}L=\color{darkblue}{I~\omega }\) Where I : Moment of Inertia \(\omega\) : Angular velocity The SI unit of A.M (L) = \(\Large\sf\frac{ Kg~ m^2}{s}\)
anonymous
  • anonymous
excuse but particularly i can give some example like their is a bat a ball ht the base of bat now the angular momentum of the bat
anonymous
  • anonymous
@rvc

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

rvc
  • rvc
?
rvc
  • rvc
@Michele_Laino :)
Michele_Laino
  • Michele_Laino
an example og the angular momentum can be this: please think about a metallic rod which is oscillating around to its one end, like in the drawing below: |dw:1435074583207:dw|
Michele_Laino
  • Michele_Laino
of course our rod is oscillating as effect of gravity on it. Now The Moment of Inertia of our rod, with respect to it center of oscillation, is: \[\Large I = \frac{1}{3}M{L^2}\] where M is the mass of our rod Now the moment of the external force which is acting on our rod, namely its weight, is: \[\Large {\mathbf{M}}_{\mathbf{O}}^{\mathbf{E}} = - \frac{{MgL}}{2}\sin \theta {\mathbf{\hat z}}\] |dw:1435075148006:dw|
Michele_Laino
  • Michele_Laino
|dw:1435075254161:dw|
Michele_Laino
  • Michele_Laino
so, applying the second cardinal equation of Mechanics, we can write: \[\Large \begin{gathered} \frac{d}{{dt}}\left( {I\omega } \right) = - \frac{{MgL}}{2}\sin \theta \hfill \\ \hfill \\ I\dot \omega = - \frac{{MgL}}{2}\sin \theta \hfill \\ \hfill \\ I\ddot \theta = - \frac{{MgL}}{2}\sin \theta \hfill \\ \hfill \\ \ddot \theta + \frac{{MgL}}{{2I}}\sin \theta = 0 \hfill \\ \end{gathered} \]
Michele_Laino
  • Michele_Laino
substituting I=(1/3) M*L^2, we get: \[\Large \ddot \theta + \frac{{3g}}{{2L}}\sin \theta = 0\] finally, considering the "little oscillation" case, namely: \[\Large \sin \theta \cong \theta \] we get: \[\Large \ddot \theta + \frac{{3g}}{{2L}}\theta = 0\] That above, is a simple application of angular momentum of a rigid body Can you compute the period of little oscillation, starting from the last equation?

Looking for something else?

Not the answer you are looking for? Search for more explanations.