anonymous
  • anonymous
How may permutations of the word “spell” are there? There are____________
Mathematics
schrodinger
  • schrodinger
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
can anyone help????????
mathmate
  • mathmate
The number of permutations with repeats is \(\Large \frac{N!}{n_1!n_2!...n_k!}\) where N=total number of items k=number of types of items n1,n2...nk=number of items of each type. For unique items, put n=1 Note that \(\sum_1^k n_k = N\) Example: How many permutations can we form with the word parallel? there are 2a's, 1e, 3l's, 1p, 1r for a total of 8 letters. The permutation is therefore \(\Large \frac{8!}{2!1!3!1!1!}=\frac{40320}{2\times1\times6\times1\times1 }=3360\) See also following link if you need more explanations: http://www.mathwarehouse.com/probability/permutations-repeated-items.php
anonymous
  • anonymous
oh dang hold up

Looking for something else?

Not the answer you are looking for? Search for more explanations.