sh3lsh
  • sh3lsh
How many ways are there to distribute 12 distinguishable objects into six distinguishable boxes so that two objects are placed in each box?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
hello friend
anonymous
  • anonymous
here we must use the fundamental principle of counting...
anonymous
  • anonymous
the first box can actually fill in 12 possible ways...and then the second box can be filled in 11 ways only...

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
totally there arre 12*11 ways to fill these boxes... therefore answer=132
kropot72
  • kropot72
The number of combinations of the 12 objects taken 2 at a time is found as follows: There are 12 choices for the first object and 11 choices for the second object. Therefore the number of possible pairs is (12 * 11)/2 = 66. Note that we divide by 2, the reason being that the order of choice does not matter. The number of combinations of the 66 pairs taken 6 at a time is given by: \[\large 66C6=\frac{66\times65\times64\times63\times62\times61}{6\times5\times4\times3\times2\times1}=you\ can\ calculate\]
sh3lsh
  • sh3lsh
Unfortunately, the answer is 7,484,400
sh3lsh
  • sh3lsh
This is how to do it if you wanted to know! http://math.stackexchange.com/questions/468824/distinguishable-objects-into-distinguishable-boxes In this case, \[\left(\begin{matrix}12 \\ 2\end{matrix}\right) \left(\begin{matrix}10 \\2\end{matrix}\right)\left(\begin{matrix}8 \\ 2\end{matrix}\right)\left(\begin{matrix}6 \\ 2\end{matrix}\right)\left(\begin{matrix}4 \\ 2\end{matrix}\right)\left(\begin{matrix}2 \\ 2\end{matrix}\right)\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.