chaylaceyx3
  • chaylaceyx3
if z=a+bi and -z=a-bi, solve z+6(-z)=7 for z
Trigonometry
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions.

chaylaceyx3
  • chaylaceyx3
if z=a+bi and -z=a-bi, solve z+6(-z)=7 for z
Trigonometry
katieb
  • katieb
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

Michele_Laino
  • Michele_Laino
hint: if z= a+ bi, then: -z = -a - bi
Michele_Laino
  • Michele_Laino
furthermore: z-6z=-5z
chaylaceyx3
  • chaylaceyx3
sorry its actually the conjugate of z, not -z so its a-bi

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Michele_Laino
  • Michele_Laino
ok! then your equation can be rewritten as follows: \[\Large z + 6\bar z = a + bi + 6a - 6bi = 7a - 5bi = 7\]
Michele_Laino
  • Michele_Laino
which is equivalent to these two real equations: \[\Large \left\{ \begin{gathered} 7a = 7 \hfill \\ - 5b = 0 \hfill \\ \end{gathered} \right.\] please solve that system for a and b
chaylaceyx3
  • chaylaceyx3
a=1 and b=0 ?
Michele_Laino
  • Michele_Laino
that's right! so, what is z=...?
chaylaceyx3
  • chaylaceyx3
do i just plug these numbers into 7a-5bi?
Michele_Laino
  • Michele_Laino
no, you have to plug, those values, for a and b, into z=a+bi
Michele_Laino
  • Michele_Laino
what do you get?
chaylaceyx3
  • chaylaceyx3
so its 1?
Michele_Laino
  • Michele_Laino
correct! z=1 is the solution of your complex equation
chaylaceyx3
  • chaylaceyx3
OH ok! Thanks so much!
Michele_Laino
  • Michele_Laino
:)
chaylaceyx3
  • chaylaceyx3
question, where does the i go? my teacher asked and i wasn't sure

Looking for something else?

Not the answer you are looking for? Search for more explanations.