Zenmo
  • Zenmo
Use the dot product to determine whether the parallelogram is a rectangle. A( 3, 2, -1), B ( -2, 2, -3), C( 3, 5, -2), D( -2, 5, -4).
Mathematics
chestercat
  • chestercat
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

Zenmo
  • Zenmo
|dw:1435121613214:dw|
UnkleRhaukus
  • UnkleRhaukus
\[\vec{AB}\cdot\vec{AC}=\vec{AB}\cdot\vec{BD}=\vec{CD}\cdot\vec{AC}=\vec{CD}\cdot\vec{BD} = \]
UnkleRhaukus
  • UnkleRhaukus
\[=\langle-5, 0, -2\rangle\cdot\langle0, 3, -1\rangle \\=\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Zenmo
  • Zenmo
(-5 x 0) + (0 x 3) + (-2 x -1 ) = 0 + 0 + 2 = 2. The parallelogram is not a rectangle, since the dot product isn't 0?
UnkleRhaukus
  • UnkleRhaukus
yeah, the opposite sides might be parallel, but the adjacent are not perpendicular
Zenmo
  • Zenmo
Thanks! :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.