elleblythe
  • elleblythe
Find the dy/dx of: 6x^(4/3) + 2y^5 = x^3y^2 + cube root of pi^5
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Loser66
  • Loser66
where are you stuck?
elleblythe
  • elleblythe
@Loser66 is the correct answer (not simplified): -cube root of 8 / (-10y^4 + 2x^3y + 3x^2y) ?
Loser66
  • Loser66
You guessed? or just pick one of the options and check it from me?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Loser66
  • Loser66
Show me your work, please. Just take derivative both sides and isolate y'. Done.
elleblythe
  • elleblythe
@Loser66 I solved for it. \[8x ^{1/3}+10y ^{4}(dy/dx)=x^32y(dy/dx)+3x^2y^2(dy/dx)+5/3\pi^^{2/3}\]
Loser66
  • Loser66
the left hand side is ok, but the right one!! first term of the right one is \(x^3y^2\), hence its derivative is \(3x^2y^2+2x^3y (dy/dx)\) the last term is a constant, hence its derivative =0 , ignore it
Loser66
  • Loser66
now, combine and isolate dy/dx, please
elleblythe
  • elleblythe
@Loser66 -cube root of 8 + 3x^2y^2 / (-10y^4 + 2x^3y)
Loser66
  • Loser66
the sign of denominator is not correct, it should be \(\dfrac{dy}{dx}=\dfrac{3x^2y^2-\sqrt[3]{x}}{10y^4-2x^3y}\)

Looking for something else?

Not the answer you are looking for? Search for more explanations.