anonymous
  • anonymous
calculus exam tomorrow please help me, calculate :
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[\lim_{x \rightarrow 0}[1/\sin ^{2}x-1/x^{2}]\]
anonymous
  • anonymous
Using the fact that \(\lim\limits_{x\to0}\dfrac{\sin x}{x}=1\), you have that \(\sin x\approx x\) near \(x=0\), so \[\lim_{x\to0}\left(\frac{1}{\sin^2x}-\frac{1}{x^2}\right)=\lim_{x\to0}\left(\frac{1}{x^2}-\frac{1}{x^2}\right)\]
anonymous
  • anonymous
@SithsAndGiggles the answer would be 0? but on the answer sheet is 1/3

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Hmm, interesting... Let's try something else then. \[\frac{1}{\sin^2x}-\frac{1}{x^2}=\frac{x^2-\sin^2x}{x^2\sin^2x}\to\frac{0}{0}\quad\text{as }x\to0\] Use L'Hopital's rule from here.
anonymous
  • anonymous
@SithsAndGiggles am doing like this too.. and the derivative is driving me crazy.. lol
anonymous
  • anonymous
\[\frac{\dfrac{d}{dx}\left[x^2-\sin^2x\right]}{\dfrac{d}{dx}\left[x^2\sin^2x\right]}=\frac{2x-2\sin x\cos x}{2x\sin^2x+2x^2\sin x\cos x}=\frac{2x-\sin2x}{2x\sin^2x+x^2\sin2x}\] Writing \(2\sin x\cos x=\sin2x\) might make things a bit simpler. We get another indeterminate form \(\dfrac{0}{0}\), so do it again: \[\begin{align*}\frac{\dfrac{d}{dx}\left[2x-\sin2x\right]}{\dfrac{d}{dx}\left[2x\sin^2x+x^2\sin2x\right]}&=\frac{2-2\cos2x}{2\sin^2x+4x\sin x\cos x+2x\sin2x+2x^2\cos2x}\\\\ &=\frac{2-2\cos2x}{2\sin^2x+4x\sin2x+2x^2\cos2x} \end{align*}\] and keep this up.
anonymous
  • anonymous
@SithsAndGiggles the final answer is correct 1/3, but i wonder why the first solution is incorrect .
anonymous
  • anonymous
I'm currently looking into it. It's an interesting pattern here, if you can call it that: \[f(x,n)=\frac{1}{\sin^nx}-\frac{1}{x^n}\] \[\begin{array}{c|c}n&\lim\limits_{x\to0}f(x,n)\\ \hline 0&0\\ 1&0\\ 2&\dfrac{1}{2}\\ \ge3&\infty \end{array}\] I suspect it has something to do with the approximation \(\sin x\approx x\) not being valid in some cases.
anonymous
  • anonymous
\(\dfrac{1}{3}\), not \(\dfrac{1}{2}\)*
anonymous
  • anonymous
Yup, I was on the right track. It has to do with the fact that we're neglecting to take into consideration the other terms in the approximation of \(\sin x\). See here for an in-depth discussion: http://math.stackexchange.com/a/105606/170231
anonymous
  • anonymous
In practice: \[\sin x\approx x-\frac{1}{3!}x^3~~\implies~~\sin^2x\approx x^2-\frac{2}{3!}x^4=x^2-\frac{1}{3}x^4\] So, \[\begin{align*}\frac{1}{\sin ^2x}-\frac{1}{x^2}&\approx\frac{1}{x^2-\dfrac{1}{3}x^4}-\frac{1}{x^2}\\\\ &=\frac{x^2-x^2+\dfrac{1}{3}x^4}{x^2\left(x^2-\dfrac{1}{3}x^4\right)}\\\\ &=\frac{1}{3}\times\frac{1}{1-\dfrac{1}{3}x^2}\\\\ &\to\frac{1}{3}\text{ as }x\to0 \end{align*}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.