calculus exam tomorrow please help me, calculate :

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

calculus exam tomorrow please help me, calculate :

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\[\lim_{x \rightarrow 0}[1/\sin ^{2}x-1/x^{2}]\]
Using the fact that \(\lim\limits_{x\to0}\dfrac{\sin x}{x}=1\), you have that \(\sin x\approx x\) near \(x=0\), so \[\lim_{x\to0}\left(\frac{1}{\sin^2x}-\frac{1}{x^2}\right)=\lim_{x\to0}\left(\frac{1}{x^2}-\frac{1}{x^2}\right)\]
@SithsAndGiggles the answer would be 0? but on the answer sheet is 1/3

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Hmm, interesting... Let's try something else then. \[\frac{1}{\sin^2x}-\frac{1}{x^2}=\frac{x^2-\sin^2x}{x^2\sin^2x}\to\frac{0}{0}\quad\text{as }x\to0\] Use L'Hopital's rule from here.
@SithsAndGiggles am doing like this too.. and the derivative is driving me crazy.. lol
\[\frac{\dfrac{d}{dx}\left[x^2-\sin^2x\right]}{\dfrac{d}{dx}\left[x^2\sin^2x\right]}=\frac{2x-2\sin x\cos x}{2x\sin^2x+2x^2\sin x\cos x}=\frac{2x-\sin2x}{2x\sin^2x+x^2\sin2x}\] Writing \(2\sin x\cos x=\sin2x\) might make things a bit simpler. We get another indeterminate form \(\dfrac{0}{0}\), so do it again: \[\begin{align*}\frac{\dfrac{d}{dx}\left[2x-\sin2x\right]}{\dfrac{d}{dx}\left[2x\sin^2x+x^2\sin2x\right]}&=\frac{2-2\cos2x}{2\sin^2x+4x\sin x\cos x+2x\sin2x+2x^2\cos2x}\\\\ &=\frac{2-2\cos2x}{2\sin^2x+4x\sin2x+2x^2\cos2x} \end{align*}\] and keep this up.
@SithsAndGiggles the final answer is correct 1/3, but i wonder why the first solution is incorrect .
I'm currently looking into it. It's an interesting pattern here, if you can call it that: \[f(x,n)=\frac{1}{\sin^nx}-\frac{1}{x^n}\] \[\begin{array}{c|c}n&\lim\limits_{x\to0}f(x,n)\\ \hline 0&0\\ 1&0\\ 2&\dfrac{1}{2}\\ \ge3&\infty \end{array}\] I suspect it has something to do with the approximation \(\sin x\approx x\) not being valid in some cases.
\(\dfrac{1}{3}\), not \(\dfrac{1}{2}\)*
Yup, I was on the right track. It has to do with the fact that we're neglecting to take into consideration the other terms in the approximation of \(\sin x\). See here for an in-depth discussion: http://math.stackexchange.com/a/105606/170231
In practice: \[\sin x\approx x-\frac{1}{3!}x^3~~\implies~~\sin^2x\approx x^2-\frac{2}{3!}x^4=x^2-\frac{1}{3}x^4\] So, \[\begin{align*}\frac{1}{\sin ^2x}-\frac{1}{x^2}&\approx\frac{1}{x^2-\dfrac{1}{3}x^4}-\frac{1}{x^2}\\\\ &=\frac{x^2-x^2+\dfrac{1}{3}x^4}{x^2\left(x^2-\dfrac{1}{3}x^4\right)}\\\\ &=\frac{1}{3}\times\frac{1}{1-\dfrac{1}{3}x^2}\\\\ &\to\frac{1}{3}\text{ as }x\to0 \end{align*}\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question