anonymous
  • anonymous
cos(arctan(-12/5)+arctan(3/4))
Trigonometry
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
@dan815 @uri
anonymous
  • anonymous
I'm assuming that you want to solve this in exact form by hand without a calculator.
anonymous
  • anonymous
In that case, you will need to use the arctan sum formula.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
@math1234 that would be correct
anonymous
  • anonymous
1/1+x^2 ?
anonymous
  • anonymous
No, it is \[\tan^{-1} a + \tan^{-1} b = \tan^{-1} \frac{ a+b }{ 1-ab }\]
anonymous
  • anonymous
Upon combining the inside using the arctan sum formula, you can use your mentioned formula to compute the cos of the arctan.
anonymous
  • anonymous
so that gves us \[\tan^{-1} \frac{ \frac{ -12 }{ 5 }+\frac{ 3 }{ 4 } }{ 1-\frac{ -12 }{ 4 }*\frac{ 3 }{ 4 } }\]
anonymous
  • anonymous
Yes, then you plug it into \[\cos (\tan^{-1} x) = \frac{ 1 }{ \sqrt{1+x^2} }\]
anonymous
  • anonymous
Where x is your fractional expression above.
anonymous
  • anonymous
\[\cos (\tan^{-1} \frac{ 33 }{ 16 })=\frac{ 1 }{ \sqrt{1+(\frac{ 33 }{ 6 }})^{2} }\]
anonymous
  • anonymous
idk where to go from here
anonymous
  • anonymous
That's your answer.
anonymous
  • anonymous
Just add the denominator.
anonymous
  • anonymous
56/65 Refer to the attachment below.

Looking for something else?

Not the answer you are looking for? Search for more explanations.