mathmath333
  • mathmath333
question
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
mathmath333
  • mathmath333
\(\large \color{black}{\begin{align}& \normalsize \text{which of the following is an odd function}\hspace{.33em}\\~\\ & a.)\ 2^{-x\cdot x} \hspace{.33em}\\~\\ & b.)\ 2^{x-x\cdot x\cdot x\cdot x} \hspace{.33em}\\~\\ & c.)\ \normalsize \text{both a.) and b.) } \hspace{.33em}\\~\\ & d.)\ \normalsize \text{neither a.) nor b.) } \hspace{.33em}\\~\\ \end{align}}\)
anonymous
  • anonymous
D
anonymous
  • anonymous
I got it, it's always D :P

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

mathmath333
  • mathmath333
is b.) odd
anonymous
  • anonymous
I think the question could better have been which one is even
anonymous
  • anonymous
Whenever you u see an exponent, how can the minus sign get down to the 2, how can it change sign and go from positive to NEGATIVE and vice versa,, it's always positive or negative
anonymous
  • anonymous
But never both
mathmath333
  • mathmath333
thnx
anonymous
  • anonymous
Wlc
anonymous
  • anonymous
\[f(x)=2^{-x^2}~~\implies~~f(-x)=2^{-(-x)^2}=2^{-x^2}=f(x)\] \[g(x)=2^{x-x^4}~~\implies~~g(-x)=2^{-x-(-x)^4}=2^{-x-x^4}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.