anonymous
  • anonymous
Convert (-5, pi/4) to rectangular coordinates. A. (sqrt(2) / 2, sqrt(2) / 2) B. (5 sqrt(3) / 2, 5/ 2) C. (5 sqrt(2) / 2, 5 sqrt(2) / 2) D. (-5 sqrt(2) / 2, -5 sqrt(2) / 2)
Mathematics
schrodinger
  • schrodinger
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
I am thinking that it would be B. However I am having trouble understanding how to get my answer.
anonymous
  • anonymous
\[x = rcos \theta\]\[y= rsin \theta\]
anonymous
  • anonymous
\[x = (-5)\cos(\frac{ \pi }{ 4 })\]\[y = (-5)\sin(\frac{ \pi }{ 4 })\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
I don't get any of the answers :(
anonymous
  • anonymous
yes. last step is to use a unit circle to get sin (π/4) and cos (π/4)
anonymous
  • anonymous
45?
anonymous
  • anonymous
Oh sin and cos of 45?
anonymous
  • anonymous
yes
anonymous
  • anonymous
It would be A?
anonymous
  • anonymous
D. A doesn't have -5 for r
anonymous
  • anonymous
Oh you just said the answer didn't you
anonymous
  • anonymous
yes r can be negative. |dw:1435189073642:dw|
anonymous
  • anonymous
Oh I see now! D is the answer! Thank you for your time
anonymous
  • anonymous
no problem. you're welcome

Looking for something else?

Not the answer you are looking for? Search for more explanations.