anonymous
  • anonymous
Verifying Trigonometric Identies help.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[\frac{ 1 }{sinx-1 }-\frac{ 1 }{ sinx+1 }=-2\sec^2x\]
anonymous
  • anonymous
\[\frac{ sinx+1 }{\sin^2x-1}-\frac{ sinx-1 }{\sin^2x-1 }=\frac{ 2 }{ \sin^2x-1}\]
rishavraj
  • rishavraj
\[(a + b) (a - b) = (a^2 - b^2)\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
that's what I got so far
rishavraj
  • rishavraj
u mean \[\frac{ \sin x + 1 - (\sin x -1) }{ \sin^2 x - 1 }\]
anonymous
  • anonymous
it wouldn't just be \[\frac{ 2 }{\sin^2x-1 }\]
rishavraj
  • rishavraj
so it would be \[\frac{ 2 }{ \sin^2 x - 1 }\] and cos^2 x + sin^2 x = 1 proceed
rishavraj
  • rishavraj
\[\sin^2 - 1 = - \cos^2 x \]
anonymous
  • anonymous
so \[\frac{ 2}{ \cos^2x }\]
rishavraj
  • rishavraj
its \[\frac{ -2 }{ \cos^2 x }\]
anonymous
  • anonymous
ah yeah I see that now
rishavraj
  • rishavraj
and \[\frac{ 1 }{ \cos x } = \sec x\]
anonymous
  • anonymous
I know sec x= 1/cos x
anonymous
  • anonymous
it still keeps the ^2 ?
rishavraj
  • rishavraj
\[\frac{ 1 }{ \cos^2 x } = \sec^2 x\]
anonymous
  • anonymous
thank you I got it now
rishavraj
  • rishavraj
u welcome :))

Looking for something else?

Not the answer you are looking for? Search for more explanations.