rvc
  • rvc
Basic Tutorial: Chemical Kinetics
Chemistry
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
rvc
  • rvc
\(\Large\rm To~determine~the~rate~of~the~reaction~we~have~the~\\ \Large rate~law.\\ \Large A~rate~law~is~a~mathematical~equation~that~describes~\\ \Large the~progress~of~the~reaction.Rate~law~is~determined~\\ \Large experimentally.There~are~2~different~forms~of~the~law:~ \\~\\ \Large A.Differential~rate~law \\ ~\\ \Large B.Integrated~rate~law\)
rvc
  • rvc
\(\huge\color{blue}{\bigstar}\color{red}{\rm Differential~Rate~Law}\color{blue}{\bigstar} \) \(\Large\color{black}{\rm The~differential~rate~law~relates~the~rate~of\\ reaction~to~the~concentrations~of~the~various~species\\ in~the~system. }\)
rvc
  • rvc
\( \rm Each~rate~law~contains~a~constant,~k,~called~the~rate~constant.~\\~ The~units~for~the~rate~constant~depend~upon~the~rate~law,~because~\\~the~rate~always~has~ units~of~mole~ L^{-1} sec^{-1} and~the~concentration~always~has~units\\~ of~ mole~ L^{-1}.\)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

rvc
  • rvc
\(\begin{array}{|c|c|c|} \hline \rm{Order}&\rm{Explanation}&\rm{Differential~Rate~Law}\\ \hline \rm{Zero}~&~\rm{For~a~zero-order~reaction,~\\ the~ rate~ of~ reaction~ is~ a~ constant. }~&~\rm{ r = k} \\ \hline \rm{First}~&~\rm{Rate~of~reaction~ proportional\\~to~con~of~one~of~the~reactants.}~&~\rm{r = k [A]}\\ \hline \rm{Second}~&~\rm{Rate~of~reaction~is\\~proportional~to~square~of\\ concentration~of~one~\\of~the~ reactants}~&~\rm{r=k[A]^2}~\\ \hline \end{array} \)
rvc
  • rvc
\(\begin{array}{|c|c|c|} \hline \Large\rm{\color{darkblue}{Order}}&\Large\rm{\color{darkblue}{Unit~of~k}}\\ \hline \rm{Zero}&\rm{mole \cdot L^{-1} \cdot sec^{-1}. }\\ \hline \rm{First}&\rm{sec^{-1}. }\\ \hline \rm{Second}&\rm{ L \cdot mole^{-1} \cdot sec^{-1}}\\ \hline \end{array}\)
Michele_Laino
  • Michele_Laino
I think It is a good introduction of chemical kinetics!
sweetburger
  • sweetburger
Once again another great tutorial from @rvc. Well done.
rvc
  • rvc
Thanks :) @Michele_Laino @sweetburger
rvc
  • rvc
\(\huge\color{blue}{\bigstar}{\rm\color{red} {Integrated~ Rate~ Law}}\color{blue}{\bigstar}\) \(\Large\color{black}{\rm The~differential~rate~law~is~directly~proportional~\\to~conc^n~of ~the~reactants. That~ is,the~ rate~ is~\\ proportional~ to~ a~ derivative~ of~ a~ concentration. }\)
rvc
  • rvc
\(\large\color{black}{\rm Consider~ the~ reaction\\ \hspace{150pt} A \rightarrow B\\ ~\\ The ~rate~ of~ reaction,r,is ~given~ by : ~~ r=-\Large\frac{d[A]}{dt} }\) \(\large\color{black}{\rm Suppose~this~reaction~obeys~a~first~order~rate~law:~r=k[A]}\) \(\large\color{black}{\rm }\)
rvc
  • rvc
\(\large\color{black}{\rm This~rate~ law~ can~ also~ be~ written~ as~:~r=-\large\frac{d[A]}{dt}=k[A] \\~\\~Well~ I ~will~write~the~integrated~rate~law~directly~~ \ddot\smile }\)
rvc
  • rvc
\(\begin{array}{|c|c|c|} \hline \rm\Large{Reaction~order}&\rm\Large{Differential~law}&\Large\rm{Integrated~law}\\ \hline \rm\large{Zero}&\rm\large{-\large\frac{d[A]}{dt}=k}&\rm\large{[A] = [A]_0 - k t}\\ \hline \rm\large{First}&\rm\large{-\large\frac{d[A]}{dt}=k[A]}&\rm\large{[A] = [A]_0 e^{- k t}}\\ \hline \rm\large{Second}&\rm\large{-\large\frac{d[A]}{dt}=k[A]^2}&\rm\large{[A] =\large\frac{[A]_0}{1 + k t [A]_0}}\\ \hline \end{array} \)
SyedMohammed98
  • SyedMohammed98
AWES☻ME!!!!
rvc
  • rvc
Thanks @SyedMohammed98 :)
SyedMohammed98
  • SyedMohammed98
You're Welcome :)
anonymous
  • anonymous
This would have been so useful if I read it before my exam today! And just yesterday I was struggling at this @rvc but I'll definitely remember this.
abb0t
  • abb0t
https://www.youtube.com/watch?v=qo0TUPNMf_8 Tutorial 1 of 17 on chemical kinetics.
rvc
  • rvc
@ShizukaTheOtaku i noticed u and other user asking the same question regarding the unit of rate constant So i planned making one :)
anonymous
  • anonymous
This is a great way to allow the other to learn. Good job @rvc!
rvc
  • rvc
thank you @Hoslos :)
anonymous
  • anonymous
No problem.
TheSmartOne
  • TheSmartOne
Good job :)
rvc
  • rvc
Thank you @TheSmartOne :)
Photon336
  • Photon336
yeah @rvc great job with this
rvc
  • rvc
thank you @Photon336 :)
welshfella
  • welshfella
very good tutorial
rvc
  • rvc
Thank you so much @welshfella :)
Photon336
  • Photon336
Always got confused by the units.
arindameducationusc
  • arindameducationusc
Nice. @rvc Good job!
sammixboo
  • sammixboo
Good job!
rvc
  • rvc
Thank You @sammixboo

Looking for something else?

Not the answer you are looking for? Search for more explanations.