• anonymous
Suppose that an investment of $13,000 has grown in value at a rate of 9% per year. If the current value is $16,835.38, then how many years have passed?
  • Stacey Warren - Expert
Hey! We 've verified this expert answer for you, click below to unlock the details :)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
  • chestercat
I got my questions answered at in under 10 minutes. Go to now for free help!
  • mathstudent55
You need to use the formula \(F = P(1 + r)^t\) where F = future value, P = present value r = interest rate, and t = time in years. First, copy the formula. Then rewrite the formula with all the known amounts substituted in. The only unknown is t. Then solve for t. Since t is an exponent, you need to use logarithms.

Looking for something else?

Not the answer you are looking for? Search for more explanations.