mathmath333
  • mathmath333
greatest integer function
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
mathmath333
  • mathmath333
\(\large \color{black}{\begin{align} & \normalsize \lfloor{x\rfloor}= \text{greatest integer less than or equal to x} \hspace{.33em}\\~\\ & \normalsize \lceil{x\rceil}=\text{smallest integer greater than or equal to x} \hspace{.33em}\\~\\ & \normalsize \text{If }\ x\ \text{is not an integer. } \hspace{.33em}\\ & \normalsize \text{Prove that } \lceil{x\rceil} +\lfloor{x\rfloor}\ \text{is an odd integer } \hspace{.33em}\\~\\ \end{align}}\)
ParthKohli
  • ParthKohli
If \(\lfloor x \rfloor = k\) then \(\lceil x \rceil = k + 1\). Add those and you get \(2k + 1\).
amoodarya
  • amoodarya
suppose x is not integer then\[ n \le x

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

mathmath333
  • mathmath333
looks great!
anonymous
  • anonymous
where is that medal all button?
mathmath333
  • mathmath333
u r experiencing a bug i think
dan815
  • dan815
u will always add oddd + even so
dan815
  • dan815
|dw:1435254654160:dw|
dan815
  • dan815
not saying anything different from amoo but ya

Looking for something else?

Not the answer you are looking for? Search for more explanations.