anonymous
  • anonymous
Form a third-degree polynomial function with real coefficients such that 7 + i and -4 are zeros. f(x)=
Algebra
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
campbell_st
  • campbell_st
well one of the factors is a quadratic with complex roots so start with that the roots is \[x = 7 \pm i\] subtract 7 from both sides of the equation. \[x - 7 = \pm i\] square both sides of the equation \[(x -7)^2 = i^2\] you need to remember i^2 = -1 so then its \[(x -7)^2 = -1~~~or~~~~(x -7)^2 + 1 = 0\] so you need to simplify \[(x -7)^2 + 1 \] to get the quadratic factor. the linear factor is when x = -4 or x + 4 is the linear factor... then the polynomial is \[P(x) = (x +4)[(x - 7)^2 + 1] \] simplify the equation
anonymous
  • anonymous
Ahhh, I see! Thank you. :-)

Looking for something else?

Not the answer you are looking for? Search for more explanations.