SolomonZelman
  • SolomonZelman
I made up a series. oh oh.
Calculus1
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
SolomonZelman
  • SolomonZelman
\(\large\color{black}{ \displaystyle \sum_{n=1}^{\infty}\frac{n^n}{\Gamma(n^2+1)} }\)
SolomonZelman
  • SolomonZelman
should go by `Γ(x+1)=x!` that \(\large\color{black}{ \displaystyle \sum_{n=1}^{\infty}\frac{n^n}{(n^2)!} }\)
triciaal
  • triciaal
what is r

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

SolomonZelman
  • SolomonZelman
it is the gamma function
triciaal
  • triciaal
oh thanks
SolomonZelman
  • SolomonZelman
\(\large\color{black}{ \displaystyle \lim_{n\rightarrow \infty}\frac{(n+1)^{n+1}}{(n+1)^2!}~\times\frac{n^2!}{n^n} }\) ratio test...
SolomonZelman
  • SolomonZelman
\(\large\color{black}{ \displaystyle \lim_{n\rightarrow \infty}\frac{(n+1)^{n+1}}{(n+1)^2!}~\times\frac{n^2!}{n^n} }\) \(\large\color{black}{ \displaystyle \lim_{n\rightarrow \infty}\frac{(n+1)^{n+1}}{n^n}~\times\frac{n^2!}{(n+1)^2!} }\) \(\large\color{black}{ \displaystyle \lim_{n\rightarrow \infty}\frac{(n+1)^{n}}{n^n}~\times\frac{n^2!~(n+1)}{(n+1)^2!} }\) \(\large\color{black}{ \displaystyle \lim_{n\rightarrow \infty}\frac{n^2!~(n+1)}{(n+1)^2!} }\) =0 (by numerical approach.)
SolomonZelman
  • SolomonZelman
therefore series converges
SolomonZelman
  • SolomonZelman
I will continue to tackle this prob next week. If you want to look at a mentally disabled always welcome:) I am going offline right now....
anonymous
  • anonymous
nice series man!
SolomonZelman
  • SolomonZelman
\(\normalsize\color{black}{ \displaystyle \lim_{n\rightarrow \infty}\frac{n^2!~(n+1)}{(n+1)^2!} }\) how does it behave? \(\normalsize\color{black}{ \displaystyle \frac{\color{blue}{1}^2!~(\color{blue}{1}+1)}{(\color{blue}{1}+1)^2!}=\frac{1!(2)}{4!} =1/12 }\) \(\normalsize\color{black}{ \displaystyle \frac{\color{blue}{2}^2!~(\color{blue}{2}+1)}{(\color{blue}{2}+1)^2!}=\frac{4!(3)}{9!} =1/(5\cdot6\cdot7\cdot8\cdot3) }\) \(\normalsize \color{black}{ \displaystyle \frac{\color{blue}{3}^2!~(\color{blue}{3}+1)}{(\color{blue}{3}+1)^2!}=\frac{9!(4)}{16!} =1/(10\cdot11\cdot12\cdot13\cdot14\cdot15\cdot4) }\) \(\normalsize \color{black}{ \displaystyle \frac{\color{blue}{4}^2!~(\color{blue}{4}+1)}{(\color{blue}{4}+1)^2!}=\frac{16!(5)}{25!} =1/(17\times ~~{\bf ....}~~\times24\times5) }\) \(\normalsize \color{black}{ \displaystyle \frac{\color{blue}{5}^2!~(\color{blue}{5}+1)}{(\color{blue}{5}+1)^2!}=\frac{25!(6)}{36!} =1/(26\times ~~{\bf ....}~~\times 35\times6) }\) the common ratio clearly becomes 0. You are multiplying by the tiniest values you can (and even can't) imagine.So the common ratio is r=0. ... By the way \(\Gamma \) is a Latin latter originally (but it is also Russian). Also, from here you clearly see a way to simplify the limit, which you wouldn't necessarily think of (or understand if showed) without expanding the expression after plugging in values for n the way I showed for n=1, 2, 3, 4, 5.. \(\normalsize\color{black}{ \displaystyle \lim_{n\rightarrow \infty}\frac{n^2!~(n+1)}{(n+1)^2!} ~~~{\LARGE =} \\[1.7em] \displaystyle \lim_{n\rightarrow \infty}\frac{n+1}{(n^2+1) \times (n^2+2)\times ~{\bf ....} \times ~(n+1)^2}}\) I hope it is clear where I am going. n+1 cancel, and then we have a polynomial with n's - in fact a huge polynomial with n's. And that limit is thus 0. Very easy to tell it =0, in fact: \(\normalsize\color{black}{ \displaystyle \lim_{n\rightarrow \infty}\frac{{\rm C} }{f(n)}=0}\)\(\normalsize\color{black}{ ; \\[1.5em]}\) where \(\color{black}{f(n)} \) is a function that increases over (-∞,+∞). in fact even if increases over [k,+∞) (k some defined - even very big - constant of any value, and \({\rm k}\in~{\bf R}\))
Empty
  • Empty
I compared it to this larger convergent series: \[\sum_{n=1}^\infty \left( \frac{n}{n^2+n-1} \right)^n\] on the reasoning that: \[\frac{3}{9}*\frac{3}{8}*\frac{3}{7}*\frac{1}{6!} < \left( \frac{3}{7} \right)^3\]\[\frac{4}{16}*\frac{4}{15}*\frac{4}{14}*\frac{4}{13}*\frac{1}{12!} < \left( \frac{4}{13} \right)^4\] etc... Well I am not fully explaining but hopefully this gets my point across rather than go into detail.
SolomonZelman
  • SolomonZelman
I didn't see any comparison tests, \(\rm \color{royalblue}{thanks~for~your~suggesstion}\). This new series is designed for the nth root test (performing this test will allow us to see the common ratio as n→∞. (The limit set up by the compariosn test is equal to zero, showing divergence.)
anonymous
  • anonymous
there's probably some value investigating it using the Stirling formula \(n!\sim\sqrt{2\pi n}\ n^ne^{-n}\) we have that \((n^2)!\sim \sqrt{2\pi} n^{2n^2+1} e^{-n^2}\), so our sum behaves in the long run like $$\sum_{n=N_0}^\infty \frac1{\sqrt{2\pi} n^{2n^2-n+1} e^{-n^2}}=\sqrt{2\pi}\sum_{n=N_0}^\infty\frac{e^{n^2}}{n^{2n^2-n+1}}$$
SolomonZelman
  • SolomonZelman
\(\large\color{black}{ \displaystyle \sqrt{2\pi} \sum_{ n=1 }^{ \infty } \frac{e^{n^2}}{n^{2n^2-n+1}} }\) then, comparison test (compariong to the series below which is larger) \(\large\color{black}{ \displaystyle \sqrt{2\pi} \sum_{ n=1 }^{ \infty } \frac{e^{n^2}}{n^{n^2}} }\) re-writing/simplifying: \(\large\color{black}{ \displaystyle \sqrt{2\pi} \sum_{ n=1 }^{ \infty } \left(\frac{e^n}{n^n}\right)^n }\) this way, there is a common ratio of e^n/n^n Or, without re-writing it this way, \(\large\color{black}{ \displaystyle \sqrt{2\pi} \sum_{ n=1 }^{ \infty } \left(\frac{e}{n}\right)^{n^2}=a_1+a_4+a_9+a_{16}+... }\) \(\large\color{black}{ \displaystyle \sqrt{2\pi} \sum_{ n=1 }^{ \infty } \left(\frac{e}{n}\right)^{n^2}=e+\frac{e^4}{2^4}+\frac{e^9}{3^9}+\frac{e^{16}}{4^{16}}+\frac{e^{25}}{5^{25}}+... }\) it is clearly convergent.
dan815
  • dan815
2,5,10,?
dan815
  • dan815
can you figure out the next number?
imqwerty
  • imqwerty
17 :P

Looking for something else?

Not the answer you are looking for? Search for more explanations.