• rsst123
*WILL MEDAL* A curve C has the parametrization x = a sint cosα , y = bsint sinα , z = c cost, t ≥ 0 where a, b, c, α are all positive constants a)Show that C lies on the ellipsoid x^2/a^2 +y^2/b^2+z^2/c^2=1 (b) Show that C also lies on a plane that contains the z-axis (c) Describe the curve C. Give its equation I understand how to get a , by replacing the values for x,y,and z, but I am having trouble how to explain b and c. can someone please help thank you!
  • Stacey Warren - Expert
Hey! We 've verified this expert answer for you, click below to unlock the details :)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
  • jamiebookeater
I got my questions answered at in under 10 minutes. Go to now for free help!
  • IrishBoy123
actually, that answer was not great. mea culpa! if you just do \(\vec r \times \ \vec t\) and you get the normal vector to the curve for all value of the parameter t, not just the 0 and \(\pi/2\) \(\vec r \times \ \vec t\) looks something like \(<-cb \ sin\alpha, ac \ cos\alpha, 0>\), ie no \(\hat z\) component meaning that z axis is in the plane itself..... :p

Looking for something else?

Not the answer you are looking for? Search for more explanations.