anonymous
  • anonymous
HELP PLEASE. Determine if the graph is symmetric about the x-axis, the y-axis, or the origin. r = -5 - 5 cos θ Origin only x-axis only y-axis only No symmetry
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
@dan815 @phi @Hero @Miss.SweetiePie
anonymous
  • anonymous
@paki
campbell_st
  • campbell_st
have you graphed the curve..?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
yes @campbell_st
campbell_st
  • campbell_st
is it polar coordinates..?
anonymous
  • anonymous
idk
anonymous
  • anonymous
I got x-axis only
campbell_st
  • campbell_st
well can you post your graph...?
anonymous
  • anonymous
after replacing θ with -θ ... r = -5 - 5 cos(-θ) which means that both are even function so that cos(-θ) = cos(θ) r = -5 - 5 cos θ
anonymous
  • anonymous
@Miss.SweetiePie thank u so much!!!
campbell_st
  • campbell_st
lol...
anonymous
  • anonymous
Your welcome @em2000 are you a fan yet?
Michele_Laino
  • Michele_Laino
we can rewrite thhat equation, using the cartesian coordinates, namely: \[\Large r = - 5 - 5\frac{x}{r}\] from which we get: \[\Large {x^2} + {y^2} + 5\sqrt {{x^2} + {y^2}} + 5x = 0\] Now it is easy to understand if there is a symmetry for that equation

Looking for something else?

Not the answer you are looking for? Search for more explanations.