anonymous
  • anonymous
If sin Θ = 1 over 4 and tan Θ > 0, what is the value of cos Θ?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
negative square root of 15 square root of 15 square root of 15 over 4 negative square root of 15 over 4
LynFran
  • LynFran
last option
LynFran
  • LynFran
let me show u how ok

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
ok
Michele_Laino
  • Michele_Laino
hint: |dw:1435348645865:dw|
LynFran
  • LynFran
|dw:1435355888315:dw| the third option sorry
Michele_Laino
  • Michele_Laino
there are 2 angles which satisfy the condition: sin (x) = 1/4, nevertheless only one is the right one
LynFran
  • LynFran
the third option is correct
anonymous
  • anonymous
ohhhhh ok thank you both
Michele_Laino
  • Michele_Laino
:)
anonymous
  • anonymous
1 more?
Michele_Laino
  • Michele_Laino
ok!
anonymous
  • anonymous
Where are the asymptotes of f(x) = tan(2x − π) from x = pi over 2 to x = 3 pi over 2
Michele_Laino
  • Michele_Laino
we can write your function as below: \[\begin{gathered} \tan \left( {2x - \pi } \right) = \frac{{\tan \left( {2x} \right) - \tan \pi }}{{1 + \tan \left( {2x} \right)\tan \pi }} = \hfill \\ \hfill \\ = \tan \left( {2x} \right) = \frac{{\sin \left( {2x} \right)}}{{\cos \left( {2x} \right)}} \hfill \\ \end{gathered} \]
anonymous
  • anonymous
O.O lemme get my calculator
Michele_Laino
  • Michele_Laino
now we have vertical asymptotes, at point x, such that: \[\cos \left( {2x} \right) = 0\]
anonymous
  • anonymous
let me post my choices
anonymous
  • anonymous
x = 3 pi over 4, x = 5 pi over 4 x = 0, x = π, x = 2π x = 0, x = pi over 4 x = pi over 2, x = 3 pi over 2
Michele_Laino
  • Michele_Laino
namely, when: \[2x = \frac{\pi }{2} + k\pi ,\quad k = 0, \pm 1, \pm 2,...\]
anonymous
  • anonymous
D is wrong , right?
Michele_Laino
  • Michele_Laino
so dividing by 2, we get: \[x = \frac{\pi }{4} + k\frac{\pi }{2},\quad k = 0, \pm 1, \pm 2,...\]
anonymous
  • anonymous
is it C
Michele_Laino
  • Michele_Laino
no, it is A
anonymous
  • anonymous
but i thought you said one of them was 0
anonymous
  • anonymous
oh i see
Michele_Laino
  • Michele_Laino
since, using my formula, we get: \[\frac{\pi }{4},\quad \frac{{3\pi }}{4},\quad \frac{{5\pi }}{4},\quad \frac{{7\pi }}{4},...\]
anonymous
  • anonymous
yeah i just got that
anonymous
  • anonymous
thank you if i could give another medal i would
Michele_Laino
  • Michele_Laino
ok! :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.