anonymous
  • anonymous
PLEASEEEEE HELPPPPPP Find the sum of a finite geometric sequence from n = 1 to n = 6, using the expression –2(5)n – 1
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
My options are 1,223 –1,023 –7,812 7,812
anonymous
  • anonymous
@welshfella
anonymous
  • anonymous
@math1234

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

welshfella
  • welshfella
if its geometric the the nth term = a r^(n - 1) here we have a - = -2 , and r = common ratio = 5 and n is the number of the term so you need to plug thes values into the formula for n terms Sn = a * (r^n - 1) -------- r - 1 n will equal 6
welshfella
  • welshfella
* formula for the sum of n terms
welshfella
  • welshfella
as i said a = -2 , r = 5 and n = 6
anonymous
  • anonymous
so it's -2 times (5^6 - 1) over 5 -1?
welshfella
  • welshfella
yep
anonymous
  • anonymous
-7,812?
welshfella
  • welshfella
yep
anonymous
  • anonymous
Thank you so much!!!!!!!!!!!!!!!!!!!
welshfella
  • welshfella
yw

Looking for something else?

Not the answer you are looking for? Search for more explanations.