Will fan and medal! Help please! Simplify. Express with positive exponents. Rationalize denominators. (a^(-4))/(a^(-2))

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Will fan and medal! Help please! Simplify. Express with positive exponents. Rationalize denominators. (a^(-4))/(a^(-2))

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

There's an interesting property of exponential expressions that allows us to express any negative exponent as a positive. That is: doing the reciprocate, or more visually: \[A ^{-b}=\frac{ 1 }{ A^b }\]
okay so it could just be (a^4)/(a^2)? @Owlcoffee
That's not correct, if we apply it: \[\frac{ a ^{-4} }{ a ^{-2} }\] Will turn into: \[\frac{ \frac{ 1 }{ a^4 } }{ \frac{ 1 }{ a^2 } }\] So all you have to do is simplify that.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

I really dont know how to simplify that @owlcoffee
When you deal with fractions inside a fraction you have to flip one and it turns into a multiplication: \[\frac{ \frac{ a }{ b } }{ \frac{ x }{ y } }=(\frac{ a }{ b })(\frac{ y }{ x })\]
Can you move on from here?
okay well (A^-4)/(b^-2) *(a^4)/(b^2)??
Not quite.
COuld you tell me what i did wrong?
Yes, when we make them into: \[\frac{ a ^{-4} }{ a ^{-2} }=\frac{ \frac{ 1 }{ a^4 } }{ \frac{ 1 }{ a^2 } }\] We already got rid of the negative expressions, so we will only focus n the right side of the expression I wrote you above, more clearly: \[\frac{ \frac{ 1 }{ a^4 } }{ \frac{ 1 }{ a^2 } }\] And we can simplify it using the property I stated to you earlier: \[\frac{ \frac{ 1 }{ a^4 } }{ \frac{ 1 }{ a^2 } }=(\frac{ 1 }{ a^4 })(\frac{ a^2 }{ 1 })\]
1/a^2?
Correct, nice effort.!
thank you! @Owlcoffee
No problem, thats why I am here.

Not the answer you are looking for?

Search for more explanations.

Ask your own question