anonymous
  • anonymous
How do I do this? What is the answer? Solve for x: -3|2x + 6| = -12 1)x = 1 and x = 5 2)x = -1 and x = -5 3)x = -9 and x = 3 4)No solution
Algebra
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Kash_TheSmartGuy
  • Kash_TheSmartGuy
First, distribute:\[-3\left| 2x+6 \right|=-12\]\[6x+18=-12\]\[6x+(18-18)=(-12)-18\]\[6x=-30\]\[\frac{ 6x }{ 6 }=\frac{ -30 }{ 6 }\]\[x=-5\]I would go for B.
Kash_TheSmartGuy
  • Kash_TheSmartGuy
You get it, right?
anonymous
  • anonymous
are you sure? I need to get this question right. And yes I get it but I just want to make sure that the answer is b.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Kash_TheSmartGuy
  • Kash_TheSmartGuy
@Michele_Laino
anonymous
  • anonymous
?
anonymous
  • anonymous
is it right?
Michele_Laino
  • Michele_Laino
We can rewrite your equation as follows: \[\left| {2x + 6} \right| = 4\] I have divided both sides by -3
Michele_Laino
  • Michele_Laino
now we have to consider these 2 cases: \[\Large \left\{ \begin{gathered} 2x + 6 \geqslant 0 \hfill \\ 2x + 6 = 4 \hfill \\ \end{gathered} \right.\; \cup \,\left\{ {\begin{array}{*{20}{c}} {2x + 6 < 0} \\ { - \left( {2x + 6} \right) = 4} \end{array}} \right.\]
Michele_Laino
  • Michele_Laino
the solutions of your equations are given by the solutions of those system of inequality above
Michele_Laino
  • Michele_Laino
equation*
Michele_Laino
  • Michele_Laino
for example I solve the first system: I get this: \[\Large \left\{ \begin{gathered} 2x + 6 \geqslant 0 \hfill \\ 2x + 6 = 4 \hfill \\ \end{gathered} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}} {x \geqslant - 3} \\ {x = - 1} \end{array}} \right.\] am I right?
Michele_Laino
  • Michele_Laino
|dw:1435429357830:dw|
Michele_Laino
  • Michele_Laino
|dw:1435429414248:dw|
Michele_Laino
  • Michele_Laino
since x=-1, belongs to the interval (-3, +infinity), then x=-1 is a solution of your original equation
Michele_Laino
  • Michele_Laino
now, please do the same with the second system: \[\Large \left\{ {\begin{array}{*{20}{c}} {2x + 6 < 0} \\ { - \left( {2x + 6} \right) = 4} \end{array}} \right.\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.