anonymous
  • anonymous
Find all solutions of the congruences \[x+y+z\equiv 1 (mod 7)\] \[x+y+w\equiv 1 (mod 7)\] \[x+z+w\equiv 1 (mod 7)\] \[y+z+w\equiv 1 (mod 7)\]
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[\begin{align*} \begin{pmatrix}1&1&1&0\\ 1&1&0&1\\ 1&0&1&1\\ 0&1&1&1\end{pmatrix}\begin{pmatrix}x\\y\\z\\w\end{pmatrix}&\equiv\begin{pmatrix}1\mod7\\1\mod7\\1\mod7\\1\mod7\end{pmatrix}\\[2ex] \begin{pmatrix}x\\y\\z\\w\end{pmatrix}&\equiv \frac{1}{3}\begin{pmatrix}1&1&1&-2\\1&1&-2&1\\1&-2&1&1\\-2&1&1&1\end{pmatrix} \begin{pmatrix}1\mod7\\1\mod7\\1\mod7\\1\mod7\end{pmatrix} \end{align*}\]
anonymous
  • anonymous
@SithsAndGiggles Would you please explain to me how you got the second line. I am so confused. Thanks
anonymous
  • anonymous
Assuming the operations I carried out were valid (I'm not as comfortable with modular arithmetic as I should be), all I did was find the inverse of the coefficient matrix on the LHS, then multiplied both sides by this inverse. \[\begin{pmatrix}1&1&1&0\\ 1&1&0&1\\ 1&0&1&1\\ 0&1&1&1\end{pmatrix}^{-1}=\frac{1}{3}\begin{pmatrix}1&1&1&-2\\1&1&-2&1\\1&-2&1&1\\-2&1&1&1\end{pmatrix}\] and for any invertible matrix \(A\) with inverse \(A^{-1}\), we have \(AA^{-1}=A^{-1}A=I\), where \(I\) is the identity matrix. The actual computation was done by hand and a bit tedious, but you can use a calculator.

Looking for something else?

Not the answer you are looking for? Search for more explanations.