anonymous
  • anonymous
Could someone help me with this problem please? about torque and momentum
Physics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
1 Attachment
Michele_Laino
  • Michele_Laino
here we have to apply the fundamental equations of mechanics, namely: \[\Large \left\{ \begin{gathered} {{\mathbf{F}}_{\mathbf{A}}} + {{\mathbf{F}}_{\mathbf{B}}} + M{\mathbf{g}} = {\mathbf{0}} \hfill \\ {\mathbf{GA}} \times {{\mathbf{F}}_{\mathbf{A}}} + {\mathbf{GB}} \times {{\mathbf{F}}_{\mathbf{B}}} = {\mathbf{0}} \hfill \\ \end{gathered} \right.\] please note that, those are vector equations.
Michele_Laino
  • Michele_Laino
now using a refernece system in the drawing: |dw:1435473234858:dw| we can write these subsequent scalar equations, which are equivalent to those vector ones: \[\Large \left\{ \begin{gathered} {F_A}\cos \theta + {F_B}\cos \theta - Mg\cos \theta = 0 \hfill \\ - {F_A}\sin \theta - {F_B}\sin \theta + Mg\sin \theta = 0 \hfill \\ {F_A}\cos \theta - {F_A}\sin \theta - {F_B}\cos \theta - {F_B}\sin \theta = 0 \hfill \\ \end{gathered} \right.\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Michele_Laino
  • Michele_Laino
please, note that the third equation, solve your problem. As homework, you can check these other 2 equations: \[\Large \left\{ \begin{gathered} {F_A} = \frac{{1 - \tan \theta }}{2}Mg \hfill \\ \hfill \\ {F_B} = \frac{{1 + \tan \theta }}{2}Mg \hfill \\ \end{gathered} \right.\] where M is the mass of our object, and g is the gravity, namely g=9.81 m/sec^2, or g=32 feet/sec^2
Astrophysics
  • Astrophysics
Nicely done @Michele_Laino
Michele_Laino
  • Michele_Laino
thanks!! @Astrophysics :)
rvc
  • rvc
@Michele_Laino is awesome in physics and math :)
Michele_Laino
  • Michele_Laino
:) @rvc

Looking for something else?

Not the answer you are looking for? Search for more explanations.