anonymous
  • anonymous
What set of reflections and rotations would carry rectangle ABCD onto itself? (a) Rotate 180°, reflect over the x-axis, reflect over the line y=x (b) Reflect over the x-axis, rotate 180°, reflect over the x-axis (c) Rotate 180°, reflect over the y-axis, reflect over the line y=x (d) Reflect over the y-axis, reflect over the x-axis, rotate 180°
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
1 Attachment
perl
  • perl
Carry onto itself means that the transformation ends up at the same rectangle.
perl
  • perl
Pick a vertex and execute the transformations.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
im still confused.
perl
  • perl
Let's take the vertex (-1,1) a point on that rectangle.
anonymous
  • anonymous
what do i do after i take that point ?
perl
  • perl
if we rotate it 180 degrees we get (1,-1)
anonymous
  • anonymous
So i would rotate all the other points also ?
perl
  • perl
yes
anonymous
  • anonymous
There is no typo, i copied and paste it straight from the worksheet.
perl
  • perl
it says x axis twice
perl
  • perl
Can we look at part d) What happens when you do the transformations to the point (-1,1)
perl
  • perl
Start with (-1,1) Reflect over the y-axis --->(1,1) reflect over the x-axis--->(1,-1) rotate 180°---->(-1,1)
perl
  • perl
Notice that you end up at the same point you started with

Looking for something else?

Not the answer you are looking for? Search for more explanations.