mathmath333
  • mathmath333
functions
Mathematics
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions.

mathmath333
  • mathmath333
functions
Mathematics
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

mathmath333
  • mathmath333
\(\large \color{black}{\begin{align} & f(x)=x^4+x^3+x^2+x+1,\ \ x\in \mathbb{Z}^{>1} \hspace{.33em}\\~\\ & \normalsize \text{Find remainder when }\ \large f(x^5)\ \normalsize \text{is divided by} \ \large f(x) ? \hspace{.33em}\\~\\ & a.)\ 1 \hspace{.33em}\\~\\ & b.)\ 4 \hspace{.33em}\\~\\ & c.)\ 5 \hspace{.33em}\\~\\ & d.)\ \normalsize \text{a monomial in }\ x \hspace{.33em}\\~\\ & e.)\ \normalsize \text{a polynomial in }\ x \hspace{.33em}\\~\\ \end{align}}\)
ParthKohli
  • ParthKohli
Rewrite \(f(x) = \dfrac{x^5-1}{x-1}\) and \(f(x^5) = \dfrac{x^{25}-1}{x^5 - 1}\)
anonymous
  • anonymous
Don't we need \(|x|<1\) for that to be true? @ParthKohli

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

ParthKohli
  • ParthKohli
Nope, not at all.
anonymous
  • anonymous
Oh right I'm thinking of infinite sums.
mathmath333
  • mathmath333
http://www.wolframalpha.com/input/?i=table%5B%28x%5E%2825%29-1%29%2F%28x%5E5-1%29+mod%28%5Cfrac%7Bx%5E5-1%7D%7Bx-1%7D%29%2C%7Bx%2C2%2C10%7D%5D%3D
ganeshie8
  • ganeshie8
Notice that \(f(x) = \dfrac{x^5-1}{x-1} \implies x^5-1=f(x)*(x-1)\tag{1}\) \[\begin{align}f(x)&=x^4+x^3+x^2+x+1 \\~\\ \implies f(x^5)&=x^{20}+x^{15}+x^{10}+x^5+1\\~\\ &=(x^{20}-1)+(x^{15}-1)+(x^{10}-1)+(x^5-1)+5\\~\\ &=(x^5-1)(stuff)+5\\~\\ &=f(x)*(x-1)*(stuff)+5 ~~~\color{gray}{\text{(from (1))}}\\~\\ &\equiv 0+5\pmod{f(x)} \end{align}\]
mathmath333
  • mathmath333
wow thnx!
ganeshie8
  • ganeshie8
look up problem #30
mathmath333
  • mathmath333
oh u remember all things fro past cool.
mathmath333
  • mathmath333
*from
mathmath333
  • mathmath333
looks very handy book
mathmath333
  • mathmath333
i will solve it within 10 years. haha
ganeshie8
  • ganeshie8
try these https://drive.google.com/folderview?id=0B8qeUE5SqcPAWFVaM1N5anN3S2M&usp=sharing
mathmath333
  • mathmath333
its showing "error 500"
ganeshie8
  • ganeshie8
try this https://drive.google.com/drive/folders/0B8qeUE5SqcPAWFVaM1N5anN3S2M
ganeshie8
  • ganeshie8
it has a very good collection of olympiad textbooks
mathmath333
  • mathmath333
yes got it .

Looking for something else?

Not the answer you are looking for? Search for more explanations.