rsst123
  • rsst123
*WILL MEDAL* if the torsion is identically zero and the curvature is a nonzero constant, then show that the curve is a circle. I'm suppose to prove that a curve is a circle with the Frenet-Serret formulas but I have no clue how I would prove this.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
IrishBoy123
  • IrishBoy123
\(\tau = 0\) suggests that the equations simplify: \( \vec T_s = k \vec N, \ \vec N_s = -k \vec T, \ \vec B_s = 0 \) plus: \(\vec B = \vec T \times \vec N\) i think B is a red herring and that the essence of a circle is that that the tangent and the normal are always perpendicular. i would proceed from there.

Looking for something else?

Not the answer you are looking for? Search for more explanations.