mathmath333
  • mathmath333
find the range of x.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
mathmath333
  • mathmath333
\(\large \color{black}{\begin{align}& \{a,b\}\in \mathbb{R^{>0}},\ \ a>b,\ \ \normalsize \text{then }\ \ a^{1/x}>b^{1/x} \hspace{.33em}\\~\\ & \normalsize \text{find the range of }\ x .\hspace{.33em}\\~\\ \end{align}}\)
mathmath333
  • mathmath333
i think x>0
mathmath333
  • mathmath333
example http://www.wolframalpha.com/input/?i=solve+87%5E%281%2Fx%29%3E78%5E%281%2Fx%29

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

ganeshie8
  • ganeshie8
\[a^{1/x}\gt b^{1/x}\] divide \(b^{1/x}\) both sides and get \[\left(\frac{a}{b}\right)^{1/x}\gt 1\] taking log both sides \[x*\ln\left(\frac{a}{b}\right) \gt 0\] since \(\ln\left(\frac{a}{b}\right) \gt 0\) for \(a\gt b\), dividing it both sides wont flip the signs : \[x\gt 0\]
mathmath333
  • mathmath333
but after taking \(\ln \) on both sides it should be this ? \(\dfrac1x \times \ln\left(\dfrac{a}{b}\right) \gt 0\)
ganeshie8
  • ganeshie8
Ahh sry, it was just a typo
ganeshie8
  • ganeshie8
fixed : \[a^{1/x}\gt b^{1/x}\] divide \(b^{1/x}\) both sides and get \[\left(\frac{a}{b}\right)^{1/x}\gt 1\] taking log both sides \[\frac{1}{x}*\ln\left(\frac{a}{b}\right) \gt 0\] since \(\ln\left(\frac{a}{b}\right) \gt 0\) for \(a\gt b\), dividing it both sides wont flip the signs : \[\frac{1}{x}\gt 0\] Multipilying \(x^2\) both sides gives \[x\gt 0\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.