anonymous
  • anonymous
Determine two pairs of polar coordinates for the point (3, -3) with 0° ≤ θ < 360°.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
@jim_thompson5910
triciaal
  • triciaal
use what he just told you x = r cos theta and y = r sin theta between 0 and 2 pi
jim_thompson5910
  • jim_thompson5910
well I think we're going in reverse now

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

jim_thompson5910
  • jim_thompson5910
I think they are asking "if (x,y) = (3,-3), then what is (r,theta)?"
anonymous
  • anonymous
Isn't there a formula to go from this to polar
triciaal
  • triciaal
|dw:1435543120658:dw|
anonymous
  • anonymous
yes
jim_thompson5910
  • jim_thompson5910
\[\Large r = \sqrt{x^2 + y^2}\] \[\Large \theta = \arctan\left(\frac{y}{x}\right)\]
anonymous
  • anonymous
thanks
jim_thompson5910
  • jim_thompson5910
yw
anonymous
  • anonymous
that is also known as tan^-1 correct? @jim_thompson5910
jim_thompson5910
  • jim_thompson5910
yeah arctan, tan^(-1), and inverse tan are all the same thing
anonymous
  • anonymous
thanks, i got one more @jim_thompson5910

Looking for something else?

Not the answer you are looking for? Search for more explanations.