anonymous
  • anonymous
Determine two pairs of polar coordinates for the point (3, -3) with 0° ≤ θ < 360°.
Mathematics
chestercat
  • chestercat
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
triciaal
  • triciaal
use what he just told you x = r cos theta and y = r sin theta between 0 and 2 pi
jim_thompson5910
  • jim_thompson5910
well I think we're going in reverse now

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

jim_thompson5910
  • jim_thompson5910
I think they are asking "if (x,y) = (3,-3), then what is (r,theta)?"
anonymous
  • anonymous
Isn't there a formula to go from this to polar
triciaal
  • triciaal
|dw:1435543120658:dw|
anonymous
  • anonymous
yes
jim_thompson5910
  • jim_thompson5910
\[\Large r = \sqrt{x^2 + y^2}\] \[\Large \theta = \arctan\left(\frac{y}{x}\right)\]
anonymous
  • anonymous
thanks
jim_thompson5910
  • jim_thompson5910
yw
anonymous
  • anonymous
that is also known as tan^-1 correct? @jim_thompson5910
jim_thompson5910
  • jim_thompson5910
yeah arctan, tan^(-1), and inverse tan are all the same thing
anonymous
  • anonymous
thanks, i got one more @jim_thompson5910

Looking for something else?

Not the answer you are looking for? Search for more explanations.