anonymous
  • anonymous
What polynomial has a graph that passes through the given points? (-2, 2) (-1, -1) (1, 5) (3, 67)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Michele_Laino
  • Michele_Laino
A possible solution is a polynomial of fourth grade, namely: \[\Large y = a{x^4} + b{x^3} + c{x^2} + dx + e\] where, a,b , c, d, and e are real coeeficient. Now using your data we can write this algebraic system: \[\Large \left\{ \begin{gathered} - 1 = a - b + c - d + e \hfill \\ 5 = a + b + c + d + e \hfill \\ 2 = 16a - 8b + 4c - 2d + e \hfill \\ 67 = 81a + 27b + 9c + 3d + e \hfill \\ \end{gathered} \right.\] or using matrices: \[\Large \left( {\begin{array}{*{20}{c}} 1&{ - 1}&1&{ - 1} \\ 1&1&1&1 \\ {16}&{ - 8}&4&{ - 2} \\ {81}&{27}&9&3 \end{array}\;\;\begin{array}{*{20}{c}} 1 \\ 1 \\ 1 \\ 1 \end{array}} \right)\quad \left( {\begin{array}{*{20}{c}} a \\ b \\ c \\ \begin{gathered} d \hfill \\ e \hfill \\ \end{gathered} \end{array}} \right) = \left( {\begin{array}{*{20}{c}} { - 1} \\ 5 \\ 2 \\ {67} \end{array}} \right)\]
UsukiDoll
  • UsukiDoll
what if OP doesn't know matrices? These days Linear Algebra is taught at either a very well known private high school or public university
Michele_Laino
  • Michele_Laino
I think that she knows algebra of matrices, since it is the only method that I know to solve her problem @UsukiDoll

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Michele_Laino
  • Michele_Laino
applying the "Gauss Elimination Method" we get: the subsequent equvalent system: \[\Large \left( {\begin{array}{*{20}{c}} 1&{ - 1}&1&{ - 1} \\ 0&2&0&2 \\ 0&0&{ - 12}&{10} \\ 0&0&0&6 \end{array}\;\;\left. {\begin{array}{*{20}{c}} 1 \\ 0 \\ { - 15} \\ {10} \end{array}} \right|\;\begin{array}{*{20}{c}} { - 1} \\ 6 \\ { - 6} \\ {50} \end{array}} \right)\]
Michele_Laino
  • Michele_Laino
as we can see there are infinity solutions, which are depending on one real parameter
Michele_Laino
  • Michele_Laino
I think that I have made an error, since the reqiested polynoimial is a polynomial of third grade, like below: \[\Large y = a{x^3} + b{x^2} + cx + d\] In that case more simpler methods can be applied in order to solve the corresponding algebraic system
Michele_Laino
  • Michele_Laino
requested*
Michele_Laino
  • Michele_Laino
In that case we have a squre system, and if the matrix of coefficient is a nonsingular matrix, then we have one and only one solution for coefficients a, b, c, d
Michele_Laino
  • Michele_Laino
oops.. square system...
Michele_Laino
  • Michele_Laino
using the polynomial of third grade, I got this system: \[\Large \left\{ \begin{gathered} - 1 = - a + b - c + d \hfill \\ 5 = a + b + c + d \hfill \\ 2 = - a + 4b - 2c + d \hfill \\ 67 = 27a + 9b + 3c + d \hfill \\ \end{gathered} \right.\]
Michele_Laino
  • Michele_Laino
or, using matrices: \[\Large \left( {\begin{array}{*{20}{c}} { - 1}&1&{ - 1}&1 \\ 1&1&1&1 \\ { - 8}&4&{ - 2}&1 \\ {27}&9&3&1 \end{array}\left. {\begin{array}{*{20}{c}} {} \\ {} \\ {} \\ {} \end{array}} \right|\;\begin{array}{*{20}{c}} { - 1} \\ 5 \\ 2 \\ {67} \end{array}} \right)\]
Michele_Laino
  • Michele_Laino
again, I apply the "Gauss Elimination Method" and I get: \[\Large \left( {\begin{array}{*{20}{c}} { - 1}&1&{ - 1}&1 \\ 0&2&0&2 \\ 0&0&6&{ - 3} \\ 0&0&0&{ - 20} \end{array}\left. {\begin{array}{*{20}{c}} {} \\ {} \\ {} \\ {} \end{array}} \right|\;\begin{array}{*{20}{c}} { - 1} \\ 4 \\ 2 \\ { - 40} \end{array}} \right)\]
Michele_Laino
  • Michele_Laino
now being a square system, and being the matrix of coefficients of our system a nonsingular matrix, then we can state that there is one and only one solution

Looking for something else?

Not the answer you are looking for? Search for more explanations.