errors/fallacy/valid/correct .... BUT consider this limit (in a q.) (it is rather a joke)

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

errors/fallacy/valid/correct .... BUT consider this limit (in a q.) (it is rather a joke)

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\(\Large\color{black}{ \displaystyle \lim_{x\rightarrow0^+ }\left( \ln x\right) }\)
I am sure (most of) you are able to demonstrate how this limit diverges to -∞, using basic algebraic and logarithmic properties. ` W A T C H M E ! ` \(\Large\color{black}{ \displaystyle \lim_{x\rightarrow0^+ }\left( \frac{x~\ln x}{x}\right) }\) since top and bottom are 0 when you plug in 0 for x, we are able to use LHS. \(\Large\color{black}{ \displaystyle \lim_{x\rightarrow0^+ }\left( \frac{\ln x+(x/x)}{1}\right) }\) \(\Large\color{black}{ \displaystyle \lim_{x\rightarrow0^+ }\left( \ln x+1\right) }\) \(\Large\color{black}{ \displaystyle \lim_{x\rightarrow0^+ }\left( \ln x\right)+\lim_{x\rightarrow0^+ }\left( 1\right) }\) \(\Large\color{black}{ \displaystyle \lim_{x\rightarrow0^+ }\left( \ln x\right)+1 }\) So far, all I did is that I made this limit +1, but as we know ((-∞)+1=-∞) Thus, I have NOT (yet) changed the value of the limit. Now, repeat the same thing with the limit, you will have \(\Large\color{black}{ \displaystyle \lim_{x\rightarrow0^+ }\left( \ln x\right)+(1\times \infty ) }\) For those that would like to write this properly, \(\Large\color{black}{ \displaystyle \lim_{x\rightarrow0^+ }\left( \ln x\right)+\lim_{k\rightarrow \infty}(1\times k ) }\) then perhaps, \(\Large\color{black}{ \displaystyle \lim_{x\rightarrow0^+ }\left( \ln x\right)+\lim_{k\rightarrow 0^+}(\frac{1}{k} ) }\) would the following be invalid? \(\Large\color{black}{ \displaystyle \lim_{x\rightarrow0^+ }\left( \ln x\right)+\lim_{x\rightarrow 0^+}(\frac{1}{x} ) }\) \(\Large\color{black}{ \displaystyle \lim_{x\rightarrow0^+ }\left( \ln x+ \frac{1}{x}\right) }\) \(\Large\color{black}{ \displaystyle =\infty }\) (that limit was → -∞ previously)
\[\lim(f(x)~~+g(x))~~=~~\lim(f(x))~~+\lim(g(x))\] is valid only if both the individual limits exist

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

FIne, that is one piece.... but even then, a limit turned out to be "indeterminate" then, and I didn't seem to use anything invalid previously....
(1) The way I see it, is that I multiplied top and bottom by 0/0 (essentially). (2) But even then after appalling LHS multiple times, I don't get to combine the one's. Each time I have a +1, it should dissolve in the result that the limit - in (-∞).
even then, after *applying*
consider a similar example : \[\lim\limits_{x\to \infty} ~0~ = ~~\lim\limits_{x\to\infty}(\frac{1}{x}-\frac{1}{x}) \stackrel{?}{=}~\lim\limits_{x\to\infty} \frac{1}{x}~-\lim\limits_{x\to\infty} \frac{1}{x}\]
yeah:) lim f+lim g \(\ne\) lim (f+g) in this case.... :o
so there are 3 problems here. (I thought of only 1st 2 when I wrote it)
there is nothing wrong with multiplying/dividing by \(x\) as \(x\to 0^+\) notice that \(x\) is not identically equal to 0, so it is fine to multiply/divide
oh, ok. what I though is wrong was right, right, was wrong, (blah blah..
Would it be valid to combine the 1's or do they dissolve one-by-one?
I think you cannot split the limit at below step because not both the individual limits exist : |dw:1435585129527:dw|

Not the answer you are looking for?

Search for more explanations.

Ask your own question