anonymous
  • anonymous
What integral represents the volume of the solid formed by revolving the region bounded by the graphs of y = x^3 y = 1 and x = 2 about the line x = 2
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
mLe
  • mLe
Hello @Yaros and Welcome to OpenStudy! Thanks for asking a Qualified Help Question first try graphing out what you have been given so that you have a visual representation of what you are looking for :)
Michele_Laino
  • Michele_Laino
your problem can be represented by this drawing: |dw:1435594893861:dw|
Michele_Laino
  • Michele_Laino
now I make this traslation: \[\Large \left\{ \begin{gathered} x = X + 2 \hfill \\ y = Y \hfill \\ \end{gathered} \right.\] where X, Y are the new coordinates, furthermore, we can see that the origin of the plane X-Y is lòocated at point x=2,y=0

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Michele_Laino
  • Michele_Laino
|dw:1435595055446:dw|
Michele_Laino
  • Michele_Laino
Now I refer the equation of our cubic parabola to the new reference system, so I get: \[\Large y = {x^3} \Rightarrow Y = {\left( {X - 2} \right)^3}\]
Michele_Laino
  • Michele_Laino
so the requested volume is given by the subsequent integral: \[\Large V = \pi \int_0^1 {dY\left\{ {{{\left( {\sqrt[3]{Y} - 2} \right)}^2} - {{\left( { - 1} \right)}^2}} \right\}} \]
Michele_Laino
  • Michele_Laino
oops.. the right equation of our paraboa using the coordinates X,Y is: \[\Large y = {x^3} \Rightarrow Y = {\left( {X + 2} \right)^3}\]
Michele_Laino
  • Michele_Laino
|dw:1435595559191:dw|
Michele_Laino
  • Michele_Laino
please keep in mind that we are considering the rotation, around the x=2 axis
Michele_Laino
  • Michele_Laino
please keep in mind that we are considering the rotation, around the x=2 axis
Michele_Laino
  • Michele_Laino
after a simple computation, we get: \[\Large V = \pi \left. {\left( {\frac{3}{5}{Y^{5/3}} + 3Y - 3{Y^{4/3}}} \right)} \right|_0^1 = \frac{{3\pi }}{5}\]
Michele_Laino
  • Michele_Laino
|dw:1435596051708:dw|
Michele_Laino
  • Michele_Laino
|dw:1435596146656:dw|
Michele_Laino
  • Michele_Laino
that integral is the volume generated by the rotation of the shaded region above
Michele_Laino
  • Michele_Laino
now we have to add the volume of the cylinder whose radius is r=1 and height =1
Michele_Laino
  • Michele_Laino
so we get: \[\Large {V_{TOTAL}} = V + \pi = \frac{{3\pi }}{5} + \pi = \frac{{8\pi }}{5}\]
Michele_Laino
  • Michele_Laino
Another way to compute the requested volume, is to apply the subsequent formula: \[\Large {V_{TOTAL}} = \pi {\int_0^1 {dY\left( {\sqrt[3]{Y} - 2} \right)} ^2}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.