anonymous
  • anonymous
Write an indirect proof to show that the diagonals of a parallelogram bisect one another. Be sure to create and name the appropriate geometric figures.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
I really someone to help me!!
anonymous
  • anonymous
@ganeshie8
anonymous
  • anonymous
@Michele_Laino

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Michele_Laino
  • Michele_Laino
step #1 in a parallelogram opposite side are congruent each other
Michele_Laino
  • Michele_Laino
|dw:1435597683771:dw|
Michele_Laino
  • Michele_Laino
since we can write: AD=BC
Michele_Laino
  • Michele_Laino
now we have this: |dw:1435597752477:dw| \[\begin{gathered} \angle DAM \simeq \angle MCB \hfill \\ \angle MBC \simeq \angle ADM \hfill \\ \end{gathered} \]
Michele_Laino
  • Michele_Laino
so the triangles ADM and BMC are congruent each other since the ASA criterion
Michele_Laino
  • Michele_Laino
in particular we have: \[\begin{gathered} AM \simeq MC \hfill \\ DM \simeq MB \hfill \\ \end{gathered} \] which represent the thesis of your problem
anonymous
  • anonymous
wait... that's it?
anonymous
  • anonymous
@Michele_Laino
Michele_Laino
  • Michele_Laino
yes!
anonymous
  • anonymous
So how would I write out the problem?
anonymous
  • anonymous
@Michele_Laino
Michele_Laino
  • Michele_Laino
you have to write my steps above @fighter23

Looking for something else?

Not the answer you are looking for? Search for more explanations.