anonymous
  • anonymous
A point charge q1=−4.00nC is at the point x=0.600 meters, y=0.800 meters, and a second point charge q2=+6.00nC is at the point x=0.600 meters, y=0.Calculate the magnitude E of the net electric field at the origin due to these two point charges. Express your answer in newtons per coulomb to three significant figures.
Physics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Astrophysics
  • Astrophysics
|dw:1435733672454:dw|\[E = \frac{ k|q| }{ r^2 }\] you will have to use the following formula.
Astrophysics
  • Astrophysics
|dw:1435734175254:dw| you can make an axis if it makes it easier for you, also to understand if you need a direction as well.
Michele_Laino
  • Michele_Laino
here you have to compute a vector sum, in other words the resultant electric field, at the origin of the coordinate system is given by the subsequent formula: \[\Large {\mathbf{E}} = {{\mathbf{E}}_{\mathbf{1}}} + {{\mathbf{E}}_{\mathbf{2}}} = - \frac{{k\left| {{q_1}} \right|}}{{x_0^2 + y_0^2}}{{\mathbf{r}}_{\mathbf{1}}} - \frac{{k{q_2}}}{{x_0^2}}{{\mathbf{r}}_{\mathbf{2}}}\] where r_1 and r_2 are the subsequent vectors: |dw:1435745839643:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Michele_Laino
  • Michele_Laino
now, developing that vector equation we get, the subsequent scalar equations: \[\Large \begin{gathered} {E_x} = \frac{{k\left| {{q_1}} \right|}}{{x_0^2 + y_0^2}}\frac{{{x_0}}}{{\sqrt {x_0^2 + y_0^2} }} - \frac{{k{q_2}}}{{x_0^2}} \hfill \\ \hfill \\ {E_y} = - \frac{{k\left| {{q_1}} \right|}}{{x_0^2 + y_0^2}}\frac{{{y_0}}}{{\sqrt {x_0^2 + y_0^2} }} \hfill \\ \end{gathered} \] where E_x and E_y are the components x, y respectively of the resultant vector field, and x_0=0.6 meters, and y_=0.8 meters
Astrophysics
  • Astrophysics
Haha, yup I guess I should've mentioned the vector sum :P, yay @Michele_Laino
Michele_Laino
  • Michele_Laino
:) @Astrophysics
anonymous
  • anonymous
tnx guys!!

Looking for something else?

Not the answer you are looking for? Search for more explanations.