dan815
  • dan815
just for fun, see if you think of some ways to prove \[\sum_{k=0}^{m-1}\binom{m-1}{k}=2^{m-1}\]
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Empty
  • Empty
hey bb
anonymous
  • anonymous
A combinatoric interpretation of this fact is given by counting subsets of different sizes of a set \(S\) of \(m-1\) elements. Since we count the number of subsets of size \(k\) for \(0 \le k \le m-1\), this sum must be equal to the number of subsets of \(S\), which is \(2^{m-1}\).
anonymous
  • anonymous
Consider \(m-1\) place for a subset. For each subset it can either include or not include an element. For each element, there are \(2\) possibilities. Multiplying these together we get \(2^{m-1}\) subsets.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
You can use binomial theorem.
anonymous
  • anonymous
As well as power set interpretation
ganeshie8
  • ganeshie8
Just for the sake of alternative, using pascal's rule can be enlightening too \[\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k} \] |dw:1435740725845:dw| Induction step goes like this \[\begin{align} \sum\binom{m}{k}&=\sum\left[\binom{m-1}{k-1}+\binom{m-1}{k}\right]\\~\\ &=\sum\binom{m-1}{k-1}+\sum\binom{m-1}{k}\\~\\&=2^{m-1}+2^{m-1}\\~\\&=2^{m} \end{align}\]
amoodarya
  • amoodarya
induction over m
UsukiDoll
  • UsukiDoll
Binomial Theorem
amoodarya
  • amoodarya
\[A=\left\{ a_1,a_2,a_3,...,a_{m-1} \right\}\\card(a)=m-1\\ \left(\begin{matrix}m-1 \\ 0\end{matrix}\right)+\left(\begin{matrix}m-1 \\ 1\end{matrix}\right)+...+\left(\begin{matrix}m-1 \\ m-1\end{matrix}\right)=total \space \space subsets \space of A\\=2^{card(A)}=2^{m-1} \]

Looking for something else?

Not the answer you are looking for? Search for more explanations.