Verify the identity. cosine of x divided by quantity one plus sine of x plus quantity one plus sine of x divided by cosine of x equals two times secant of x.

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Verify the identity. cosine of x divided by quantity one plus sine of x plus quantity one plus sine of x divided by cosine of x equals two times secant of x.

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

HI!!
lets see if we can write this in math ok?
\[\frac{\cos(x)}{1+\sin(x)} +\frac{1+\sin(x)}{\cos(x)}\] right ?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

\[\frac{ cosx }{ 1+sinx }+\frac{ 1+sinx }{ cosx }= 2\sec x\]
yeah must be , since the answer is \(2\sec(x)\) lets do the addition and see it
Isn't it 2sec x
yes it is
because everything else cancels out. yay
lets do the addition and see it trick i learned via @satellite73 put \(\cos(x)=a\), and \(\sin(x)=b\) get \[\frac{a}{1+b}+\frac{1+b}{a}\] when you add you get \[\frac{a^2+(1+b)^2}{(1+b)a}\]
nothing cancels yet, we gotta multiply out up top \[\frac{a^2+1+2b+b^2}{(1+b)a}\]
then since \(a^2+b^2=1\) you have \[\frac{2+2b}{(a+b)a}=\frac{2(1+b)}{(1+b)a}=\frac{2}{a}\]
replacing \(a\) by \(\cos(x)\) you are left with \[\frac{2}{\cos(x)}=2\sec(x)\]
hope all steps are clear, it is easier to write with a and b instead of cosine and sine
Thank you!! @misty1212
@misty1212 when you are done can you help me??
\[\color\magenta\heartsuit\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question