anonymous
  • anonymous
What is the determinant of https://lincolnlearningsolutions.brainhoney.com/Resource/19809088,B84/Assets/assessmentimages/alg%202%20pt%202%20u3l5%2019.jpg
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Michele_Laino
  • Michele_Laino
developing the determinant along the first row of your matrix, we have: \[ \det A = 1 \times \det \left( {\begin{array}{*{20}{c}} { - 5}&{ - 7} \\ { - 5}&{ - 7} \end{array}} \right) - \det \left( {\begin{array}{*{20}{c}} { - 6}&4 \\ { - 5}&{ - 7} \end{array}} \right) - 8\det \left( {\begin{array}{*{20}{c}} { - 6}&4 \\ { - 5}&{ - 7} \end{array}} \right)\]
anonymous
  • anonymous
okay
Michele_Laino
  • Michele_Laino
now we have: \[\det \left( {\begin{array}{*{20}{c}} { - 5}&{ - 7} \\ { - 5}&{ - 7} \end{array}} \right) = 0,\;\det \left( {\begin{array}{*{20}{c}} { - 6}&4 \\ { - 5}&{ - 7} \end{array}} \right) = 42 + 20 = 62,\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Michele_Laino
  • Michele_Laino
please continue
anonymous
  • anonymous
okay
Michele_Laino
  • Michele_Laino
what do you get?
anonymous
  • anonymous
just a second
anonymous
  • anonymous
(-11 -3) (-10 -14)
anonymous
  • anonymous
?
Michele_Laino
  • Michele_Laino
Hint: the determinat of a matrix with real coefficients, has to be a real number
Michele_Laino
  • Michele_Laino
determinant*
anonymous
  • anonymous
okay i just got confused
Michele_Laino
  • Michele_Laino
hint: \[\begin{gathered} \det A = 1 \times \det \left( {\begin{array}{*{20}{c}} { - 5}&{ - 7} \\ { - 5}&{ - 7} \end{array}} \right) - \det \left( {\begin{array}{*{20}{c}} { - 6}&4 \\ { - 5}&{ - 7} \end{array}} \right) - 8\det \left( {\begin{array}{*{20}{c}} { - 6}&4 \\ { - 5}&{ - 7} \end{array}} \right) = \hfill \\ \hfill \\ = 0 - 62 - 8 \times 62 = ...? \hfill \\ \end{gathered} \]
Michele_Laino
  • Michele_Laino
sorry, I developed the determinant along the first column of your matrix, not along the first row
anonymous
  • anonymous
okay
Michele_Laino
  • Michele_Laino
what is: \[\Large - 62 - \left( {8 \times 62} \right) = ...?\]
anonymous
  • anonymous
-558
Michele_Laino
  • Michele_Laino
that's right! we have det(A)= -558, where A is your matrix
anonymous
  • anonymous
thank you!
Michele_Laino
  • Michele_Laino
:)

Looking for something else?

Not the answer you are looking for? Search for more explanations.