A community for students.
Here's the question you clicked on:
 0 viewing
anonymous
 one year ago
(Will Medal)
It has totally slipped my mind but can someone explain what are and how to identify terms in a expression?
anonymous
 one year ago
(Will Medal) It has totally slipped my mind but can someone explain what are and how to identify terms in a expression?

This Question is Closed

SolomonZelman
 one year ago
Best ResponseYou've already chosen the best response.1lets consider the following: \(\large\color{black}{ \displaystyle x^3+2x4 }\). Now, I will put each term in it's own color. \(\large\color{black}{ \displaystyle \color{blue}{x^3}\color{green}{+2x}\color{red}{4} }\) (there are 3 terms) Why are they different terms? Because one variable is raised to a power of a 3. The other variable is raised to the power of 1 (as x and x¹ is same). And the third term is a a constant (constant  number that is not a variable).

SolomonZelman
 one year ago
Best ResponseYou've already chosen the best response.1This is just 1 example

SolomonZelman
 one year ago
Best ResponseYou've already chosen the best response.1Want more examples?

SolomonZelman
 one year ago
Best ResponseYou've already chosen the best response.1can be like terms too \(\large\color{black}{ \displaystyle 13x^4+5x^411x+x^{1000} }\) the like terms are the terms that can be added (if they are of a same variable, and are raised to the same power. In this case like terms are 3x\(^4\) and 5x\(^4\) because they are same variable (x) and raised to same power (power of 4), and just like ` ` 3a+5a ` ` is 2a, so this, ` ` 3x\(^4\)+5x\(^4\) ` ` is equal to 2x\(^2\). But if there are not combined yet, they are considered to be different terms.) let me do the coloring for each term this time as well. \(\Large\color{black}{ \displaystyle \color{brown}{1}\color{blue}{3x^4}\color{teal }{+5x^4}\color{magenta}{11x}\color{darkgoldenrod}{+x^{1000}} }\)

SolomonZelman
 one year ago
Best ResponseYou've already chosen the best response.1each color is for a different terms

SolomonZelman
 one year ago
Best ResponseYou've already chosen the best response.1you can see that the 2nd term in blue, and the 3rd term in greenish color, they can be added together, because they are like terms (same power and same variable), BUT before they are combined they are treated as separate terms.

SolomonZelman
 one year ago
Best ResponseYou've already chosen the best response.1As you read I will do one more example, and then perhaqps if we find that necessary I do more examples.

SolomonZelman
 one year ago
Best ResponseYou've already chosen the best response.1Now, I am going to show an example of a different variables in one expression. \(\Large\color{black}{ \displaystyle x^4+w^4 }\) there two terms \(\Large\color{black}{ \displaystyle \color{red}{x^4}\color{blue}{+w^4} }\) (they have the same power, but can't be added, because one is w and the other is x  different variables. They are different terms.) (Note: Again, even if I was able to combine them by adding or subtraction, BEFORE I HAVE DONE SO, they would be treated as different terms.)

SolomonZelman
 one year ago
Best ResponseYou've already chosen the best response.1When you are done reading I will give you a short exercise.

SolomonZelman
 one year ago
Best ResponseYou've already chosen the best response.1i will put it up now, so that you can do it right away as you get to it.

SolomonZelman
 one year ago
Best ResponseYou've already chosen the best response.1`Question #1:` How many terms are there is the following expression? \(\large\color{black}{ \displaystyle x^3x^2+x+2 }\) \(\scriptsize\color{ slate }{\scriptsize{\bbox[5pt, red ,border:2px solid ]{~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ }}}\) `Question #2:` How many terms are there is the following expression? \(\large\color{black}{ \displaystyle 4x+2a }\) \(\scriptsize\color{ slate }{\scriptsize{\bbox[5pt, red ,border:2px solid ]{~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ }}}\) `Question #3:` How many terms are there is the following expression? \(\large\color{black}{ \displaystyle 3w^{10} 2w^{10}+wx}\) \(\scriptsize\color{ slate }{\scriptsize{\bbox[5pt, red ,border:2px solid ]{~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ }}}\)

SolomonZelman
 one year ago
Best ResponseYou've already chosen the best response.1(I will be back after replies as soon as I can)

SolomonZelman
 one year ago
Best ResponseYou've already chosen the best response.1for question 1, it has 4 terms \(\Large\color{black}{ \displaystyle \color{purple}{x^3}\color{magenta}{x^2}\color{brown}{+x}\color{gray}{+2} }\)

SolomonZelman
 one year ago
Best ResponseYou've already chosen the best response.1question 2, is correct. There are 2 terms. (well done)

anonymous
 one year ago
Best ResponseYou've already chosen the best response.0So the last one is 4 too?

SolomonZelman
 one year ago
Best ResponseYou've already chosen the best response.1yup, I was just about to say there are 4 terms in question 3. Very nice !!

anonymous
 one year ago
Best ResponseYou've already chosen the best response.0Thanks you! :) I get it now! You're really awesome!

SolomonZelman
 one year ago
Best ResponseYou've already chosen the best response.1Just some colors and your quick understanding has made it:) You are welcome!
Ask your own question
Sign UpFind more explanations on OpenStudy
Your question is ready. Sign up for free to start getting answers.
spraguer
(Moderator)
5
→ View Detailed Profile
is replying to Can someone tell me what button the professor is hitting...
23
 Teamwork 19 Teammate
 Problem Solving 19 Hero
 Engagement 19 Mad Hatter
 You have blocked this person.
 ✔ You're a fan Checking fan status...
Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.