anonymous
  • anonymous
Points A and B lie on a circle centered at point O. If OA = 5 and length of AB(own) over circumference=14, what is the area of sector AOB? Use the value π = 3.14, and choose the closest answer. 19.6 square units 39.3 square units 7.85 square units 15.7 square units
Mathematics
jamiebookeater
  • jamiebookeater
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

welshfella
  • welshfella
|dw:1435770412496:dw|
anonymous
  • anonymous
so what do u think the answer is?
welshfella
  • welshfella
I'm not getting any of the options . I'll better check to see if i have the right method

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

welshfella
  • welshfella
the circumference of the circle is 2 * 3.14 * 5 = 31.4 units the length of the arc of the sector = 14 = 14/31.4 as a fraction of the circumference. the area of the whole circle is 3.14 * 5^2 = 78.5 sq units
anonymous
  • anonymous
thanks a bunch
welshfella
  • welshfella
yw
welshfella
  • welshfella
so the area of the sector = (14/31.4) * 78.5 = 35 sq units which isn't one of the options (??)

Looking for something else?

Not the answer you are looking for? Search for more explanations.