anonymous
  • anonymous
Solve using matrices x-2y+z=10 3x+y=5 7x+2z=2
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Owlcoffee
  • Owlcoffee
This method is also called "Gauss jordan reduction", it consists on representing a system of equalities and tweaking the matrix until you get a matrix that looks like: \[\left[\begin{matrix}a & 0 & 0 & K \\ 0 & b & 0 & K'\\ 0 & 0 & c & K'' \end{matrix}\right]\] The reasong is quite simple, because that matrix implies that: \[ax=K\] \[by=K'\] \[cz=K''\] So, applying it to the system of equation you posted, the matrix will look like this: \[\left[\begin{matrix}1 & -2 & 1 & 10 \\ 3 & 1 & 0 & 5\\ 7& 0 & 2 & 2\end{matrix}\right]\] So, all you have to do is apply the matrix properties until you get a matrix with the same structur as the first I mentioned.
anonymous
  • anonymous
Would you mind going step by step with me? I am confused

Looking for something else?

Not the answer you are looking for? Search for more explanations.