anonymous
  • anonymous
What is the relative maximum and minimum of the function? f(x) = 2x^2 + 28x - 8 A. Minimum Value: -106 Range y > -106 B.Minimum Value: -7 Range y > -7 D.Minimum Value: 7 Range y > 7
Mathematics
jamiebookeater
  • jamiebookeater
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
anonymous
  • anonymous
\[f(x)=2x ^{2}+28x-8\]
SolomonZelman
  • SolomonZelman
minimum is the vertex in this case. (it doesn't have an abd max)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
how do i find the vertex? @SolomonZelman
DecentNabeel
  • DecentNabeel
A. Minimum Value: -106 Range y > -106
anonymous
  • anonymous
how did you find that? I am just wondering so I can try and solve similar equations in the future @DecentNabeel
DecentNabeel
  • DecentNabeel
fist find the stationary.. \[\mathrm{Find\:the\:stationary\:points}:\quad x=-7\]
DecentNabeel
  • DecentNabeel
then find the.. \[\mathrm{Find\:the\:monotone\:intervals}\]
DecentNabeel
  • DecentNabeel
then.. \[\mathrm{Identify\:the\:extreme\:points}:\quad \mathrm{Minimum}\left(-7,\:-106\right)\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.